Genetic diversity of sugar palm (Arenga pinnata) derived from nine regions in Indonesia based on SSR markers

##plugins.themes.bootstrap3.article.main##

DIAN YUNITA RINAWATI
REFLINUR
DINY DINARTI
SUDARSONO

Abstract

Abstract. Rinawati DY, Reflinur, Dinarti D, Sudarsono. 2021. Genetic diversity of sugar palm (Arenga pinnata) derived from nine regions in Indonesia based on SSR markers. Biodiversitas 22: 3749-3755. Sugar palm (Arenga pinnata (Wurmb) Merr.) has an important economic and conservation value. Indonesia has genetic diversity potential of sugar palm, considering the widespread distribution of sugar palm in Indonesia which has variations in geographical type. This study aims to determine the diversity and relationship of sugar palm from nine regions in Indonesia based on SSR markers. The genetic material consists of 141 sugar palm accessions derived from Bangka, Lampung, Lebak, Bogor, Tasikmalaya, Brebes, Gowa, Bombana, and Muna. Nine pairs of SSR primers were used for genotyping. The highest and lowest genetic diversity was found in the Bangka and Muna populations, respectively. The genetic diversity within a population (79%) was higher than the genetic diversity between populations (21%). The genetic distance between Bangka and Lebak is the closest (0.033), while between Lampung and Muna is the farthest (0.283). The accession relationship is divided into three major clusters. Clusters 1 consisted of Bangka, Lampung, Bogor, Tasikmalaya, Brebes, Gowa, Bombana and Muna accessions. Cluster 2 consisted of Bangka, Lampung, Lebak, Bogor, Tasikmalaya, Brebes, and Gowa accessions. Cluster 3 consisted of Bangka, Lebak, Brebes, Tasikmalaya, and Gowa accessions. Accession clustering does not show a typical relationship pattern based on geographic location.

##plugins.themes.bootstrap3.article.details##

References
Abbas B, Renwarin Y, Bintoro MH. 2010. Genetic diversity of sago palm in Indonesia based on chloroplast DNA (cpDNA ) markers. Biodiversitas 11:112–117. http://doi.org/10.13057/biodiv/d110302
Ahmed W, Feyissa T, Tesfaye K, Farrakh S. 2021. Genetic diversity and population structure of date palms (Phoenix dactylifera L.) in Ethiopia using microsatellite markers. J Genet Eng Biotechnol 19: 1-14. http://doi.org/10.1186/s43141-021-00168-5
Al-Faifi SA, Migdadi HM, Algamdi SS, Khan MA, Ammar MH, Al-Obeed RS, Al-Thamra MI, El-Harty EH, Jakse J. 2016. Development, characterization and use of genomic SSR markers for assessment of genetic diversity in some Saudi date palm (Phoenix dactylifera L.) cultivars. Electron J Biotechno 21:18–25. http://doi.org/10.1016/j.ejbt.2016.01.006
Aljuhani WS. 2016. Genetic Diversity and the Impact of Geographical Location on the Relationships Between Phoenix dactylifera L. Germplasms Grown in Saudi Arabia. Hereditary Genetics. 5:1-11. http://doi.org/10.4172/2161-1041.1000172
Arias D, Gonzalez M, Prada F, Ayala-Diaz I, Montoya C, Daza E, Romero HM. 2015. Genetic and phenotypic diversity of natural American oil palm (Elaeis oleifera (H.B.K.) Cortés) accessions. Tree Genet. Genomes 11: 1-13. http://doi.org/10.1007/s11295-015-0946-y
Baker WJ, Couvreur TLP. 2012. Biogeography and distribution patterns of Southeast Asian palms. In: Gower D, Johnson K, Richardson J, Rosen B, Ruber K, Williams S (eds) Biotic Evolution and Environmental Change in Southeast Asia. Cambridge University Press, Cambridge. http://doi.org/10.1017/cbo9780511735882.009
Bakoume C, Wickneswari R, Siju S, Rajanaidu N, Kushairi A, Billotte N. 2015. Genetic diversity of the world’s largest oil palm (Elaeis guineensis Jacq.) field genebank accessions using microsatellite markers. Genet Resour and Crop Ev 62: 349–360. http://doi.org/10.1007/s10722-014-0156-8
Bird MI, Taylor D, Hunt C. 2005. Palaeoenvironments of insular Southeast Asia during the Last Glacial Period: A savanna corridor in Sundaland?. Quaternary Sci Rev 24:2228–2242. http://doi.org/10.1016/j.quascirev.2005.04.004
Botstein D, White RL, Skalnick MH, Davies RW. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphism. Am J Hum Genet 32:314-331. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1686077/
Brunet J, Larson-Rabin Z, Stewart CM. 2012. The distribution of genetic diversity within and among populations of the rocky mountain columbine: the impact of gene flow, pollinators, and mating system. Int J Plant Sci 173: 484–494. http://doi.org/10.1086/665263
Chaouch Khouane A, Akkak A, Benbouza H. 2020. Molecular identification of Date palm (Phoenix dactylifera L.) “Deglet noor” pollinator through analysis of genetic diversity of Algerian male and female ecotypes using SSRs markers. Sci Hortic-Amsterdam 274:1-11. http://doi.org/10.1016/j.scienta.2020.109668
Doyle J. 1991. DNA protocols for plants. In: Hewitt GM, Johnston AWB, Young JPW (eds) Molecular Techniques in Taxonomy. Springer, Berlin. http://doi.org/10/1007/978-3-642-83962-7_18
Effendi DS. 2015. Prospek pengembangan tanaman aren (Arenga pinnata Merr) mendukung kebutuhan bioetanol di Indonesia. Perspektif 9: 36–46. http://doi.org/10.21082/p.v9n1.2010
Eiserhardt WL, Svenning JC, Kissling WD, Balslev H. 2011. Geographical ecology of the palms (Arecaceae): Determinants of diversity and distributions across spatial scales. Ann Bot-London 108:1391–1416. http://doi.org/10.1093/aob/mcr146
Elmeer K, Sarwath H, Malek J, Baum M, Hamwieh A. 2011. New microsatellite markers for assessment of genetic diversity in date palm (Phoenix dactylifera L.). 3 Biotech 1:91–97. http://doi.org/10.1007/s13205-011-0010-z
Elshibli S, Korpelainen H. 2011. Biodiversity in date palm: molecular markers as indicators. In: Jain SM, Al-Khayri JM, Johnson DV (eds) Date Palm Biotechnology. Springer, Dordrecht. http://doi.org/10.1007/978-94-007-1318-5
Haryjanto L, Prastyono P, Ismail B. 2011. Keragaman genetik empat populasi Arenga pinnata Merr berdasarkan penanda isozim. JPHT 5: 13–21. http://doi.org/10.20886/jpth.2011.5.1.13-21
Ithnin M, Teh CK, Ratnam W. 2017. Genetic diversity of Elaeis oleifera (HBK) Cortes populations using cross species SSRs: Implication’s for germplasm utilization and conservation. BMC Genet 18: 1–12. http://doi.org/10.1186/s12863-017-0505-7
Jaradat AA. 2015. Biodiversity , Genetic Diversity , and Genetic Resources of Date Palm. In: Al-Khayri J, Jain S, Johnson D (eds) Date Palm Genetic Resources and Utilization. Springer, Dordrecht. http://doi.org/10.1007/978-94-017-9694-1
Jian S, Ban J, Ren H, Yan H. 2010. Low genetic variation detected within the widespread mangrove species Nypa fruticans (Palmae) from Southeast Asia. Aquatic Botany 92:23–27. http://doi.org/10.1016/j.aquabot.2009.09.003
Lim TK. 2012. Arenga pinnata. Edible Medicinal and Non-Medicinal Plants Volume 1: Fruits. Springer, Dordrecht. http://doi.org/10.1007/978-90-481-8661-7
Mahayu WM, Taryono. 2019. Coconut (Cocos nucifera L.) diversity in Indonesia based on SSR molecular marker.In: Nuringtyas TR, Hidayati L, Rafieiy M (eds). Proceeding of 1st International Conference on Bioinformatics, Biotechnology, and Bioinformatics Engineering. Universitas Gadjah Mada, Yogyakarta, 19-20 October 2018. [Indonesia]. http://doi.org/10.1063/1.5098418
Nadeem MA, Nawaz MA, Shahid MQ, Dogan Y, Comertpay G, Y?ld?z M, Hatipoglu R, Ahmad F, Alsaleh A, Labhane N, Özkan H, Chung G, Baloch FS. 2018. DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnol Biotech Eq 32:261–285. http://doi.org/10.1080/13102818.2017.1400401
Okoye MN, Bakoumé C, Uguru MI, Singh R, Okwuagwu CO. 2016. Genetic Relationships between Elite Oil Palms from Nigeria and Selected Breeding and Germplasm Materials from Malaysia via Simple Sequence Repeat (SSR) Markers. J Agr Sci 8:159-178. http://doi.org/10.5539/jas.v8n2p159
Porth I, El-Kassaby YA. 2014. Assessment of the genetic diversity in forest tree populations using molecular markers. Diversity 6:283–295. http://doi.org/10.3390/d6020283
Sulistyawati P, Widyatmoko A. 2017. Genetic diversity in kayu merah (Pterocarpus indicus Willd) populations using random amplified polymorphism DNA marker. JPTH 11: 67–76. http://doi.org/10.20886/jpth.2017.11.1.67-76
Terryana RT, Nugroho K, Lestari P. 2020. Genetic Diversity of Sugar Palm Populations from Cianjur and Banten revealed by Simple Sequence Repeat (SSR) Markers. Better Environment with Better Prosperity, Harmonization of Humankind and Nature; Proceeding of 1st International Conference on Sustainable Plantation. IPB University, Bogor, 20-22 August 2019. [Indonesia]. http://doi.org/10.1088/1755-1315/418/1/012038
Wiens JJ, Donoghue MJ. 2004. Historical biogeography, ecology and species richness. Trends Ecol Evol. 19:639–644. http://doi.org/10.1016/j.tree.2004.09.011
Zhou Q, Mu K, Ni Z, Liu X, Li Y, Xu L an. 2020. Analysis of genetic diversity of ancient Ginkgo populations using SSR markers. Ind Crops Prod 145:1-9. http://doi.org/10.1016/j.indcrop.2019.111942

Most read articles by the same author(s)

1 2 3 > >>