Morpho-agronomy performance, seed nutrition content, and Aphis craccivora resistance of cowpea (Vigna unguiculata) genotypes

##plugins.themes.bootstrap3.article.main##

MUHAMAD GHAZI AGAM SAS
YUDIWANTI WAHYU
MUHAMAD SYUKUR
PURNAMA HIDAYAT

Abstract

Abstract. Sas MGA, Wahyu Y, Syukur M, Hidayat P. 2021. Morpho-agronomy performance, seed nutrition content, and Aphis craccivora resistance of cowpea (Vigna unguiculata) genotypes. Biodiversitas 22: 4320-4326. Cowpea (Vigna unguiculata subsp. unguiculata) is an agricultural commodity that can be a source of vegetable protein and replace the need for soy as a food ingredient. The wide adaptability under sub-optimum conditions placed cowpeas as the choice to be developed. This study aimed to evaluate the cowpea genotype’s agronomic performance and resistance to Aphis craccivora to be proposed as superior genotypes. Observations were made on the morpho-agronomic characters, including the color of the young pods and dry seeds, the number of pods, the productivity of fresh pods and dried seeds, and the nutrition content. The resistance to Aphis craccivora was evaluated using a no-choice test whole plant for the resistance and tolerance evaluation. This study showed that the productivity of young pods (4.86-15.13 tons ha-1), dry seed productivity (0.83-2.71 tons ha-1). The protein content differed significantly among the 20 genotypes ranging from 19.24% to 24.45%. Aphid infestation significantly inhibited plant growth compared with non-infested plants. Infestation of Aphis craccivora decreased the dry weight of the plant by about 20% to 70%. Based on the aphid population, the 20 genotypes were classified into medium-high to very high aphid damage intensity.

##plugins.themes.bootstrap3.article.details##

References
Acquaah G. 2012. Principles of Plant Genetics and Breeding. 2nd Ed. Maryland: Wiley-Blackwell. www.wiley.com/go/acquaah/plantgeneticsandbreeding.
Avanza M, Acevedo B, Chaves M, Añón M. 2013. Nutritional and anti-nutritional components of four cowpea varieties under thermal treatments: Principal component analysis. LWT - Food Sci Technol. 51(1):148–157. doi:10.1016/j.lwt.2012.09.010.
Bahar A, Witono Y. 2015. Process optimization of tempeh protein isolate from soybean (Glycine max Merr) and cowpea (Vigna unguiculata) mixture. Int J Adv Sci Eng Inf Technol. 5(2):139–143. doi:10.18517/ijaseit.5.2.501.
Balitkabi. 2016. Description of Cowpea Superior Varieties 1991-1998. Malang.
Boukar O, Bhattacharjee R, Fatokun C, Kumar P, Gueye B. 2013. Cowpea. Di dalam: Singh M, Upadhyaya HD, Bisht IS, editor. Genetic and Genomic Resources of Grain Legume Improvement. Ed ke-1 London: Elsevier. 137–156.
Budhi GS, Aminah M. 2010. Self-sufficiency in soybean: The hope and the reality Gelar. Forum Penelit Agro Ekon. 28(1):55–68. http://124.81.126.59/handle/123456789/7592.
Chaudhary AR, Solanki SD, Rahevar PM, Patel DA. 2020. Genetic variability, correlation and path coefficient analysis for yield and its attributing traits in cowpea [Vigna unguiculata (L.) Walp] accessions. Int J Curr Microbiol Appl Sci. 9(2):1281–1293. doi:10.20546/ijcmas.2020.902.151.
Daryanto A, Syukur M, Hidayat P, Maharijaya A. 2017. Antixenosis and antibiosis based resistance of chili pepper to melon aphid. J Appl Hortic. 19(2):147–151. doi:10.37855/jah.2017.v19i02.27.
Deschamps L, Sánchez-Chopa C, Bizet-Turovsky J. 2015. Resistance in alfalfa to Aphis craccivora Koch. Chil J Agric Res. 75(4):451–456.
Ginting E, Antarlina SS, Widowati S. 2009. Superior varieties of soybeans for food industry raw materials. J Litbang Pertan. 28(3):79–87.
Gomes AMF, Draper D, Nhantumbo N, Massinga R, Ramalho JC, Marques I, Ribeiro-Barros AI. 2021. Diversity of cowpea [Vigna unguiculata (L.) walp] landraces in Mozambique: New opportunities for crop improvement and future breeding programs. Agronomy. 11(5). doi:10.3390/agronomy11050991.
Haliza W, Purwani E, Thahir R. 2007. Utilization of local bean as raw material tempeh and tofu substitution. Bul Teknol Pascapanen Pertan., 3(1):1-8.
Himawati E. 2019. Differences in performance and yield of cowpea genotype F4 generation (Vigna unguiculata (L.) Walp. subsp. unguiculata). Institut Pertanian Bogor.
Horn LN, Shimelis H. 2020. Production constraints and breeding approaches for cowpea improvement for drought-prone agro-ecologies in Sub-Saharan Africa. Ann Agric Sci. 65(1):83–91. doi:10.1016/j.aoas.2020.03.002.
James CK, Perry KL. 2004. Transmission of plant viruses by aphid vectors. Mol Plant Pathol. 5(5):505–511. doi:10.1111/j.1364-3703.2004.00240.x.
Kirigia D, Winkelmann T, Kasili R, Mibus H. 2018. Development stage, storage temperature and storage duration influence phytonutrient content in cowpea (Vigna unguiculata L. Walp.). Heliyon. 4(6):1–24. doi:10.1016/j.heliyon.2018.e00656.
Koley TK, Maurya A, Tripathi A, Singh BK, Singh M, Bhutia TL, Tripathi PC, Singh B. 2019. Antioxidant potential of commonly consumed underutilized leguminous vegetables. Int J Veg Sci. 25(4):362–372. doi:10.1080/19315260.2018.1519866.
Laamari M, Khelfa L, Coeur d’Acier A. 2008. Resistance source to cowpea aphid (Aphis craccivora Koch) in broad bean (Vicia faba L.) Algerian landrace collection. African J Biotechnol. 7(14):2486–2490.
Mbeyagala EK, Mukasa BS, Tukamuhabwa P, Bisikwa J. 2014. Evaluation of cowpea genotypes for virus resistance under natural conditions in Uganda. J Agric Sci. 6(10):176–187. doi:10.5539/jas.v6n10p176.
Narayana M, Angamuthu M. 2021. Cowpea. Di dalam: The Beans and the Peas. Elsevier. 241–272.
Nkhoma N, Shimelis H, Laing MD, Shayanowako A, Mathew I. 2020. Assessing the genetic diversity of cowpea [Vigna unguiculata (L.) Walp.] germplasm collections using phenotypic traits and SNP markers. BMC Genet. 21(1):110. doi:10.1186/s12863-020-00914-7.
Nkomo G V., Sedibe MM, Mofokeng MA. 2021. Production constraints and improvement strategies of cowpea (Vigna unguiculata L. Walp.) genotypes for drought tolerance. Int J Agron. 2021:1–9. doi:10.1155/2021/5536417.
Obopile M, Ositile B. 2010. Life table and population parameters of cowpea aphid, Aphis craccivora Koch (Homoptera: Aphididae) on five cowpea (Vigna unguiculata (L.) Walp.) varieties. J Pest Sci (2004). 83(1):9–14. doi:10.1007/s10340-009-0262-0.
Purnamasari I, Sobir S, Syukur M. 2019. Diversity and inheritance in cowpea (Vigna unguiculata) on protein and yield components characters. Biodiversitas J Biol Divers. 20(5):1294–1298. doi:10.13057/biodiv/d200507.
Sahid ZD, Syukur M, Maharijaya A. 2020. Combining ability and heterotic effects of chili pepper (Capsicum annuum L.) genotypes for yield components and capsaicin content. SABRAO J Breeding and Genetics 52 (4): 390-401.
Setyowati M, Sutoro S. 2010. Evaluation of cowpea (Vigna unguiculata L.) germplasm in acidic soil. Bul Plasma Nutfah. 16(1):44–48.
Sheahan C. 2012. Plant Guide for cowpea (Vigna unguiculata). USDA-Natural Resources Conservation Service. Cape May (US).
Soffan A, Aldawood AS. 2014. Biology and demographic growth parameters of cowpea aphid (Aphis craccivora) on faba bean (Vicia faba) cultivars. J Insect Sci. 14(120):1–10. doi:10.1673/031.014.120.
Srinivas J, Kale VS, Nagre PK. 2017. Correlation and path analysis study in cowpea [Vigna unguiculata (L.) Walp.] genotypes. Int J Curr Microbiol Appl Sci. 6(6):3305–3313. doi:10.20546/ijcmas.2017.606.388.
Trustinah T. 2015. Cowpea is a potential commodity in acidic dry land. Info Teknol., [diakses 2020 Feb 22]. https://balitkabi.litbang.pertanian.go.id/infotek/kacang-tunggakkomoditas-potensial-di-lahan-kering-masam/.
Wang S, Melnyk JP, Tsao R, Marcone MF. 2011. How natural dietary antioxidants in fruits, vegetables and legumes promote vascular health. Food Res Int. 44(1):14–22. doi:10.1016/j.foodres.2010.09.028.

Most read articles by the same author(s)

1 2 3 4 5 > >>