Prevalence of Argulus indicus, histopathology and hematological properties of infected wild fish in Lake Towuti, Indonesia

##plugins.themes.bootstrap3.article.main##

AMRIANA
DWI KESUMA SARI
https://orcid.org/0000-0002-5326-3336
SRIWULAN
https://orcid.org/0000-0001-6095-6731
HILAL ANSHARY
https://orcid.org/0000-0002-8859-6632

Abstract

Abstract. Amriana, Sari DK, Sriwulan, Anshary H. 2021. Prevalence of Argulus indicus, histopathology and hematological properties of infected wild fish in Lake Towuti, Indonesia. Biodiversitas 22: 3578-3584. Parasites are disease agents that can threaten the health and survival of wild fish as individuals and at a population level. This study aimed to improve knowledge on the prevalence of Argulus indicus, infestation rates and the pathological effects of parasite infestation on hosts as well as hematological properties of infected fish. This study can inform future studies on the prevention and control of the cases of Argulus indicus infestation. Fish from Lake Towuti (20 45? 0? S, 1210 30? 0? E) were caught from February to May 2019 using traps and gill nets. The total of 373 specimens obtained comprised 102 climbing perch (Anabas testudineus), 74 three-spot cichlids (Cichlasoma trimaculatum), 84 Nile tilapia (Oreochromis niloticus), and 113 striped snakeheads (Channa striata). The prevalence, mean intensity and abundance of A. indicus were highest in C. striata with a prevalence of 81%, mean intensity of 5.17 parasites/fish and abundance of 4.06 parasites/fish. The lowest parasite infection level was seen in C. trimaculatum with a prevalence of 4.1%, mean intensity 1.66 and mean abundance of 0.06. Histological analysis showed inflammatory responses in the skin of snakeheads (hemorrhage, increased spread of melanomacrophage and leukocyte cells), melanomacrophage and the spread of leukocyte cells were observed in climbing perch. In contrast, melanomacrophage was often observed in tilapia and trimac cichlid. Blood imaging analysis showed significant differences (P <0.05) in the number of leukocytes and percentage of monocyte cells between uninfested fish and those infested with A. indicus.

##plugins.themes.bootstrap3.article.details##

References
Ali H, Anshari KK, Prakash S. 2010. Haemotological abnormalities in an exotic carp, Hypopthalmichthys molitrix, infested by a fish louse, Argulus sp. Pollution Research 29:593-595.
Alsarakibi M, Wadeh H, Li G. 2012 Freshwater abiotic components’ impact on the viability of fish lice, Argulus sp., in Guangdong province, China. Parasitol Res. 111(1):331–339. DOI:10.1007/s00436-012-2844-7.
Alsarakibi M, Wadeh H, Li G. 2014. Influence of environmental factors on Argulus japonicus occurrence of Guangdong province, China. Parasitol Res. 113(11):4073–4083. DOI:10.1007/s00436-014-4076-5.
Blaxhall PC, Daisley KW. 1973. Routine haematological methods for use with fish blood. J Fish Biol. 5(6):771–781. DOI:10.1111/j.1095-8649.1973.tb04510.x.
Bush AO, Lafferty KD, Lotz JM, Shostak AW. 1997. Parasitology Meets Ecology on Its Own Terms: Margolis et al. Revisited. J Parasitol. 83(4):575-583. DOI:10.2307/3284227.
Esteban MÁ, Cuesta A, Chaves-Pozo E, Meseguer J. 2015. Phagocytosis in teleosts. Implications of the new cells involved. Biology (Basel). 4(4):907–922. DOI:10.3390/biology4040907
Fazio F. 2019. Fish hematology analysis as an important tool of aquaculture: A review. Aquaculture. 500:237–242. Available from: DOI:10.1016/j.aquaculture.2018.10.030.
Jones, CM., Grutter, AS. 2005. Parasitic isopods (Gnathia sp.) reduce haematocrit in captive blackeye thicklip (Labridae) on the Great Barrier Reef. J Fish Biol. 66(3):860–864. DOI:10.1111/j.1095-8649.2005.00640.x.
Kar B, Mohanty J, Hemaprasanth KP, Sahoo PK. 2013. The immune response in rohu, Labeo rohita (Actinopterygii: Cyprinidae) to Argulus siamensis (Branchiura: Argulidae) infection: Kinetics of immune gene expression and innate immune response. Aquac Res. 46(6):1–7. DOI:10.1111/are.12279.
Kar B, Moussa C, Mohapatra A, Mohanty J, Jayasankar P, Sahoo PK. 2016. Variation in susceptibility pattern of fish to Argulus siamensis: Do immune responses of host play a role? Vet Parasitol. 221:76–83. Available from: http://dx.doi.org/10.1016/j.vetpar.2016.03.013. DOI:10.1016/j.vetpar.2016.03.013.
Kumar S, Kumar TS, Vidya R, Pandey PK. 2016. A prospective of epidemiological intervention in investigation and management of argulosis in aquaculture. Aquac Int. 6:1-24. DOI:10.1007/s10499-016-0030-0.
McPherson NJ, Norman RA, Hoyle AS, Bron JE, Taylor NGH. 2012. Stocking methods and parasite-induced reductions in capture: Modelling Argulus foliaceus in trout fisheries. J Theor Biol. 312:22–33. Available from: DOI:10.1016/j.jtbi.2012.07.017.
Mikheev VN, Pasternak AF, Valtonen ET. 2015. Behavioural adaptations of argulid parasites (Crustacea: Branchiura) to major challenges in their life cycle. Parasites and Vectors. 8(1):1–10. Available from: DOI:10.1186/s13071-015-1005-0.
Nasution SH, Sulastri S, Muchlisin ZA. 2015. Habitat characteristics of Lake Towuti, South Sulawesi, Indonesia - The home of endemic fishes. AACL Bioflux. 8(2):213–223.
Neethling LAM, Avenant-Oldewage A. 2016. Branchiura - A compendium of the geographical distribution and a summary of their biology. Crustaceana. 89(11–12):1243–1446. DOI:10.1163/15685403-00003597.
Panjvini F, Abarghuei S, Khara H, Parashkoh HM. 2016. Parasitic infection alters haematology and immunity parameters of common carp, Cyprinus carpio, Linnaeus, 1758. J Parasit Dis. 40(4):1540–1543. DOI:10.1007/s12639-015-0723-8.
Parida S, Mohapatra A, Mohanty J, Sahoo PK. 2018. Labeo rohita and Argulus siamensis infection: Host size, local inflammatory reaction and immunity modulate ectoparasite load on fish. Aquac Res. 49:757–766. DOI:10.1111/are.13506.
Pekmezci GZ, Yardimci B, Bolukbas CS, Beyhan YE, Umur S. 2011. Mortality due to heavy infestation of Argulus foliaceus (Linnaeus, 1758) (Branchiura) in pond-reared carp, Cyprinus carpio L., 1758 (Pisces). Crustaceana. 84(5-6):553–7. DOI:10.1163/001121611X574317.
Rocha MJS, Jerônimo GT, da Costa OTF, Malta JC de O, Martins ML, Maciel PO, et al. 2018. Changes in haematological and biochemical parameters of tambaqui (Colossoma macropomum) parasitized by metazoan species. Rev Bras Parasitol Vet. 27(4):488–494. DOI:10.1590/S1984-296120180073.
Sahoo PK, Hemaprasanth, Kar B, Garnayak SK, Mohanty J. 2012. Mixed infection of Argulus japonicus and Argulus siamensis (Branchiura, Argulidae) in carps (Pisces, Cyprinidae): Loss estimation and a comparative invasive pattern study. Crustaceana. 85(12–13):1449–62. DOI:10.1163/156854012X651501.
Sriwongpuk S. 2020. A new report of Argulus indicus (Crustacea: Branchiura) infestation in red tilapia (Oreochromis niloticus x Oreochromis mossambicus) in Thailand. Int J GEOMATE. 2020;18(67). DOI:10.21660/2020.67.5544.
Stewart A, Jackson J, Barber I, et al. 2017. Hook, Line and Infection: A Guide to Culturing Parasites, Establishing Infections and Assessing Immune Responses in the Three-Spined Stickleback. Elsevier Ltd. United Kingdom.
Stewart A, Hunt R, Mitchell R, Muhawenimana V, Wilson CAME, Jackson JA, et al. 2018. The cost of infection: Argulus foliaceus and its impact on the swimming performance of the three-spined stickleback (Gasterosteus aculeatus). J R Soc Interface. 15(147). DOI: 10.1098/rsif.2018.0571.
Tavares-Dias M, De Moraes FR, Onaka EM, Rezende PCB, 2007. Changes in blood parameters of hybrid tambacu fish parasitized by Dolops carvalhoi (Crustacea, Branchiura), a fish louse. Vet Arh. 77(4):355–363.
Walker PD, Russon IJ, Haond C, Van Der Velde G, Wendelaar-Bonga SE. 2011.Feeding in adult Argulus japonicus Thiele, 1900 (Maxillopoda, Branchiura), an ectoparasite on fish. Crustaceana. 84(3):307–318. DOI:10.1163/001121610X551.
Weber M. 1892. Die süsswasser crustaceen des Indischen Archipels, nebst bemerkungen über die süsswasser fauna im allgemeinen. Zool Ergebnisse einer Reise Niederländisch Ost Indien. 2:528–571 [in German].