Isolation, characterization and identification of sponge-associated bacteria producing antimicrobial compounds

##plugins.themes.bootstrap3.article.main##

RISKY HADI WIBOWO
SIPRIYADI
WELLY DARWIS
DELFIANI ANGGIAS PUTRI
SALPRIMA YUDHA
MASHUDI
NOOR ANDRYAN ILSAN
PERSON PESONA RENTA

Abstract

Abstract. Wibowo RH, Sipriyadi, Darwis W, Putri DA, Yudha S, Mashudi, Ilsan NA, Renta PP, Masrukhin. 2023. Isolation, characterization and identification of sponge-associated bacteria producing antimicrobial compounds. Biodiversitas 24: 3616-3623. Sponges are marine biota that is currently in great demand as research object. Sponges also belong to a group of marine life that has symbiotic with bacteria. Bacteria that have formed a symbiotic relationship with a sponge may produce secondary metabolites that protect their host from pathogens. This study aimed to isolate, select, characterize and identify bacteria associated with the sponge Aplysina sp. that exhibit antimicrobial activity. The methods used in this study were bacterial isolation, screening, molecular identification, and observing their ability to produce antimicrobial compounds. A total of 16 isolates were isolated on the Sea Water Complete agar medium, and four isolates were able to inhibit the growth of pathogenic microbes including Staphylococcus aureus, Escherichia coliPseudomonas aeruginosa, and Candida albicans. Four isolates with the most significant inhibitory clear zones were selected for further testing. The isolate APD10 showed the biggest inhibition zone. The molecular identification results showed that the APD3 and APD15 had genetic similarities with Bacillus subtilis, isolate APD9 had genetic similarities with Bacillus paralicheniformis, and isolate APD10 had genetic similarities with Bacillus velezensis. Two isolates (APD3 and APD15) gene sequences for the KS domain in PKS were related to polyketide synthase, while APD10 in KS was related to oxidoreductase. Two isolates (APD3 and APD15) gene sequences encoding domain A on NRPS had a relationship with a bioactive compound in the form of surfactin, APD9 was related to a bioactive compound in the form of bacitracin, and APD10 NRPS was related to adenylation.

##plugins.themes.bootstrap3.article.details##

References
Amoutzias GD, Chaliotis A, Mossialos D. 2016. Discovery strategies of bioactive compounds synthesized by nonribosomal peptide synthetases and type-I polyketide synthases derived from marine microbiomes. Marine Drugs14(4): 1-20.
Abubakar H, Aris TW, Munti Y. 2011. Skrining Bakteri Yang Berasosiasi Dengan Spons Jaspis Sp. Sebagai Penghasil Senyawa Antimikroba. Jurnal Ilmu Kelautan 16(1): 35-40.
Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR. 2013. Marine natural products. Natural Product Reports 30: 237–323.
Cai H, Archambault M, Prescott JF. 2003. 16S Ribosomal RNA Sequence based Identification of Veterinary Clinical Bacteria. Journal of Veterinary Diagnostic Investigation 15(5): 465–469.
Chaib De Mares M, Jiménez DJ, Palladino G, Gutleben J, Lebrun LA, Muller EEL, Wilmes P, Sipkema D, Dirk van Elsas. 2018. Expressed protein profile of a Tectomicrobium and other microbial symbionts in the marine sponge Aplysina aerophoba as evidenced by metaproteomics. Scientific Reports 8: 11795.
Darsana I, Besung I, Mahatmi H. 2012. Potensi Daun Binahong (Anredera Cordifolia (Tenore) Steenis) dalam Menghambat Pertumbuhan Bakteri Escherichia coli secara In Vitro. Indonesia Medicus Veterinus 1(3) : 337–351.
Dharmayanti NLPI. 2011. Filogenetika Molekuler: Metode Taksonomi Organisme Berdasarkan Sejarah Evolusi. Wartazoa 21: 1-10.
Hagstrom A, Pinhassi J, Zweifel UL. 2000. Biogeographical Diversity Among Marine Bacterioplankton. Aquatic Microbial Ecology 21: 231–244.
Hassan I, Ibrahim HAH. 2016. Production, characterization and valuable applications of Exopolysaccharides from marine Bacillus subtilis SH1. Polish Journal of Microbiology 66: 449-461.
Ismet MS, Bengen DG, Radjasa OK, Kawaroe M. 2016. Komposisi dan aktifitas antibakteri spons laut dari ekosistem lamun yang berbeda diperairan kepulauan Seribu. Jurnal ilmu dan teknologi kelautan tropis 8(2): 729-745.
Lim JS, Choi BS, Choi AY, Kim KD, Kim DI, Choi IY, Ka JO. 2012. Complete Genome Sequence of the Fenitrothion-Degrading Burkholderia sp. Strain YI23. Journal of Bacteriology 194: 896-896.
Majdi N. 2008. Expression of secondary metabolites by the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola. Perpignan, University of Perpignan Via Domitia.
Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Wade WG. 1998. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Applied and Environmental Microbiology 64(2): 795-799.
Moffit MC, Neilan BA. 2003. Evolutionary affiliations within the superfamily of ketosynthases reflect complex pathway associations. Journal of Molecular Evolution 56(4): 446–457.
Moitinho-Silva L, Díez-Vives C, Batani G, Esteves AIS, Jahn MT, Thomas T. 2017. Integrated metabolism in sponge-microbe symbiosis revealed by genome-centered metatranscriptomics. ISME Journal 11: 1651–1666.
Ozkaya FH, Engin S, Tanrikul T.T, Altunok M. 2014. Screening of sponge associated fungi for antimicrobial activity against fish pathogens. Akademik Platform.
Sawhney S, Jayant KM, Shajeeda VB. 2018. Antibacterial activity of Bacillus velezensis CHB2, an endosymbiont of marine sponge Biemna fortis (Topsent, 1897) from South Andaman coast, India. International journal of basic and applied research 8: 1012-1023.
Schirmer A, Gadkari R, Reeve CD, Ibrahim F, DeLong EF, Hutchison CR. 2005. Metagenomics analysis reveals diverse polyketide synthase gene clusters in microorganisms associated with the marine sponge Discodermia dissoluta. Applied and Environmental Microbiology 71(8): 4840-4849.
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular Evolutionary Genatics Analysis Version 6.0. Molecular Biology and Evolution 30(12): 2725–2729.
Tang GL, Cheng YQ, Shen B. 2004. Leinamycin biosynthesis revealing unprecedented architectural complexity for a hybrid polyketide synthase and nonribosomal peptide synthetase. Chemical Biology 11: 33-45.
Thomas TRA, Kavlekar DP, Lok Bharathi PA. 2010. Marine drugs from spongemicrobe association-a review. Marine Drugs 8(4): 1417-1468.
Thomas T, Moitinho-Silva L, Lurgi M, Björk JR, Easson C, AstudilloGarcía C, Olson JB, Erwin PM, Lopez-legentil S, Luter H, Chaves-Fonnegra A, Costa R, Schupp PJ, Steindler L, Erpenbeck D, Gilbert J, Knight R, Ackermann G, Lopez JV, Taylor MW, Thacker RW, Montoya JM, Hentschel U, Webster NS. 2016. Diversity, structure and convergent evolution of the global sponge microbiome. Nature Communications 7: 11870.
Vilas JAG, Poveda BM, Quesada AR, Medina MA. 2015. Aeroplysinin -1, a sponge derived multi targeted bioaktive marine drug. Marine Drug 14(1): 2-12.
Wahyudi AT, Priyanto JA, Maharsiwi W, Astuti RI. 2018. Screening and Characterization of Sponge-Associated Bacteria Producing Bioactive Compounds Anti-Vibrio sp. American Journal of Biochemistry and Biotechnology 14(3): 221-229.
Webster NS, Thomas T. 2016. The sponge hologenome. mBio 7(2): e00135-16.
Yoghiapiscessa D, Batubara I, Wahyudi AT. 2016. Antimicrobial and antioxidant activities of bacterial extracts from marine bacteria associated with sponge Stylotella sp. American Journal of Biochemistry and Biotechnology 12: 36-46.
Yuliana N. 2014. Isolasi Bakteri Simbion dari Teripang Actinopyga iecanora Jaeger sebagai Penghasil Senyawa Antimikroba, Tesis Unhas. Makassar.

Most read articles by the same author(s)

1 2 > >>