Drumstick (Moringa oleifera) variation in biomass and total flavonoid content in Indonesia

##plugins.themes.bootstrap3.article.main##

RIDWAN
HAMIM
SUHARSONO
NURIL HIDAYATI
INDRA GUNAWAN

Abstract

Abstract. Ridwan, Hamim, Suharsono, Hidayati N, Gunawan I. 2021. Drumstick (Moringa oleifera) variation in biomass and total flavonoid content in Indonesia. Biodiversitas 22: 493-500. Utilization of a drumstick (Moringa oleifera Lam.) leaf has recently increased worldwide which consequently cause the increase in global demand. Indonesia, as a tropical country with large area, has a great potential to become a center for drumstick cultivation and leaf production. Drumstick distribution scattered in almost all of the islands of Indonesia has another potential for obtaining superior genotype variabilities. The aim of this study was to select the drumstick accessions from several islands in Indonesia with high leaf biomass production and flavonoid content. This experiment was carried out in the field using ten accessions of drumstick from ten islands in Indonesia, namely Sumatra, Java, Madura, Bali, Lombok, Sumbawa, Sumba, Kalimantan, Sulawesi, and Papua. Drumstick seeds were planted in polybags with a capacity of 10 kg and arranged using a randomized block design with three replications. The parameters observed were plant growth, biomass production, total flavonoid content, and antioxidant activity. The results of this study found that Sumatra accession was the accession which had the highest leaf biomass production in combination with the uppermost total flavonoid content and antioxidant activity compared to others. Sumatra accession is recommended as an excellent accession for cultivation with the aim of producing flavonoids.

##plugins.themes.bootstrap3.article.details##

References
Abdullahi IN, Ochi K, Gwaram AB. 2013. Plant population and fertilizer application effects on biomass productivity of Moringa oleifera in North-Central Nigeria. PJAS. 1(6): 94-100.
Anigboro AA, Avwioroko OJ, Ohwokevwo OA, Pessu B. 2019. Bioactive components of Ficus exasperata, Moringa oleifera and Jatropha tanjorensis leaf extracts and evaluation of their antioxidant properties. EurAsia J. of BioSci. 13: 1763-1769. Available from: http://www.ejobios.org/download/bioactive-components-of-ficus-exasperata-moringa-oleifera-and-jatropha-tanjorensis-leaf-extracts-and-7333.pdf. [Accessed 16 October 2020].
Asante WJ, Nasare IL, Dery DT, Boadu KO, and Kentil KB. 2014. Nutrient composition of Moringa oleifera leaves from two agro ecological zones in Ghana. AJPS, 8(1): 65-71. DOI: 10.5897/AJPS2012.0727.
Brilhante RSN, Sales JA, Pereira VS, Castelo-Branco DdSCM, Cordeiro RdA, Sampaio CMdS, Paiva MdAN, do Santos JBF, Sidrim JJC, Rocha MFG. 2017. Research advances on the multiple uses of Moringa oleifera: A sustainable alternative for socially neglected population. Asian Pacific J. of Trop. Med. 10(7): 621-630. DOI: http://dx.doi.org/10.1016/j.apjtm.2017.07.002.
Chatatikun M, Chiabchalard. 2013. Phytochemical screening and free radical scavenging activities of orange baby carrot and carrot (Daucus carota Linn.) root crude extracts. JOCPR. 5(4): 97-102. Available from: https://www.jocpr.com/articles/phytochemical-screening-and-free-radical-scavenging-activities-of-orange-baby-carrot-and-carrot-daucus-carota-linn-root.pdf [Accessed 21 October 2020]
Ebou Dao MC, Walsh D. 2017. Correlation between seed characteristics and biomass production of Moringa oleifera provenances grown in Ouagadougou, Burkina Faso. Afr. J. Plant Sci. 11(11): 385-393. DOI: 10.5897/AJPS2017.1579.
Edwinanto L, Septiadi E, Nurfazriah LR, Anastasya KS, Pranata P. 2018. Phytochemical features of Moringa oleifera leaves as anticancer. A Review Article. J. Med. Health. 2 (1): 680-688. Available from: https://journal.maranatha.edu/index.php/jmh/article/view/745/740. [Accessed 26 September 2018].
Fang S, Yang W, Chu X, Shang X, She C, Fu X. 2011. Provenance and temporal variations in selected flavonoids in leaves of Cyclocarya paliurus. Food Chem. 124: 1382-1386. DOI:10.1016/j.foodchem.2010.07.095.
Gadzirayi CT, Kubiku F, Mupangwa J, Masamha B, Majuru L. 2019. The effect of provenance, plant spacing and cutting interval on leaf biomass yield of Moringa oleifera Lam. East Afr. Agric. Forest. J. 83(1): 25-33. DOI: https://doi.org/10.1080/00128325.2018.1511174
Gandji K, Chadare EJ, Idohou R, Salako VK, Assogbadjo AE, Glele Kakai RL, 2018. Status and utilisation of Moringa oleifera Lam: A Review. Afr. Crop Sci. J. 26(1): 137-156. DOI: http://dx.doi.org/10.4314/acsj.v26i1.10.
Golkar P, Taghizadeh, 2018. In vitro evaluation of phenolic and osmolite compounds, ionic content, and antioxidant activity in safflower (Carthamus tinctorius L.) under salinity stress. PCTOC. DOI: https://doi.org/10.1007/s11240-018-1427-4.
Gopalakrishnan L, Doriya K, Kumar DS. 2016. Moringa oleifera: A review on nutritive importance and its medicinal application. FSHW, 5: 49-56. DOI: http://dx.doi.org/10.1016/j.fshw.2016.04.001.
Huque KS, Bashar MK, Sarker NR, Sultana N, Rot BK, Amhed S, Makkar HPS. 2017. Annual biomass production, chemical composition and in-sacco degradability of different cultivar of Moringa oleifera. IJEAB. 2(2): 864-873. DOI: http://dx.doi.org/10.22161/ijeab/2.2.39.
Ierna A, Mauro RP, Mauromicale G. 2012. Biomass, grain and energy yield in Cyana cardunculus L. as affected by fertilization, genotype and harvest time. Biomass Bioenerg. 36: 404-410. DOI:10.1016/j.biombioe.2011.11.013.
Iqbal S, Bhanger MI. 2006. Effect of season and production location on antioxidant activity of Moringa oleifera leaves grown in Pakistan. J Food Comp. Anal. 19: 544–551. DOI: http://dx.doi.org/10.1016/j.jfca.2005.05.001.
Isitua CC, Muros-Lozano MJS, Jaramillo CJ, Dutan F. 2015. Phytochemical and nutritional properties of dried leaf powder of Moringa oleifera Lam. from machala el oro province of ecuador. Asian J. Plant Sci. Res. 5(2):8-16. Available from: https://www.imedpub.com/articles/phytochemical-and-nutritional-properties-of-dried-leaf-powder-of-moringa-oleifera-lam-from-machala-el-oro-province-of-ecuador.pdf [Accessed 27 September 2018]
Khamis G, Saleh AM, Habeeb TH, Hozzein WN, Wadaan MAM, Papenbrock J, Abdelgawad H. 2020. Provenance effect on bioactive phytochemicals and nutritional and health benefits of the desert date Balanites aegyptiaca. J. Food Biochem. e13229: 1-13. DOI: 10.1111/jfbc.13229
Koul B, Chase N. 2015. Moringa oleifera Lam.: Panacea to several maladies. J. Chem. Pharm. Res., 7(6): 687-707. Available from: https://www.jocpr.com/articles/moringaoleiferalam-panacea-to-several-maladies.pdf [Accessed 28 December 2018].
Krishnamurthy L, Serraj R, Hash CT, Dakheel AJ, Reddy BV. 2007. Screening sorghum genotypes for salinity tolerant biomass production. Euphytica. 156: 15-24. DOI 10.1007/s10681-006-9343-9.
Lin M, Zhang J, Chen X. 2018. Bioactif flavonoids in Moringa oleifera and their health-promoting properties. J. Func. Food. 47: 469-479. DOI: https://doi.org/10.1016/j.jff.2018.06.011.
Melo V, Vargas N, Quirino T, Calvo CMC. 2013. Moringa oleifera L. – An underutilized tree with macronutrients for human health. Emir. J. Food Agric. 25 (10): 785-789. DOI: 10.9755/ejfa.v25i10.17003.
Moyo B, Masika PJ, Hugo A, and Muchenje V. 2011. Nutritional characterization of Moringa (Moringa oleifera Lam.) leaves. Afr. J. Biotechnol. 10(60):12925-12933. DOI: 10.5897/AJB10.1599.
Muhammad HI, Asmawi MZ, Khan NAK. 2016. A Review on promising phytochemical, nutritional and glycemic control studies on Moringa oleifera Lam. in tropical and sub-tropical regions. Asian Pac. J. Trop. Biomed. 6(10): 896-902. DOI: http://dx.doi.org/10.1016/j.apjtb.2016.08.006.
Omidi JF, Shoja MH, Sariri R. 2018. Effect of water-deficit stress on secondary metabolites of Melissa officinalis L.: role of exogenous salicylic acid. Caspian J. Environ. Sci, 16 (2): 121-134. Available from: https://cjes.guilan.ac.ir/article_2955.html [Accessed 29 September 2018]
Pakade V, Chimuka L, Cukrowska. 2013. Comparison of antioxidant activity of Moringa oleifera and selected vegetables in South Africa. South African J. of Scie. 109: 1-5. DOI: 10.1590/sajs.2013/1154
Palada MC, Ebert AW, Yang RY, Chang LC, Chang J, Wu DL. 2015. Progress in research and development of moringa at the World Vegetable Center. Proceeding I International Symposium on Moringa. Acta Hortic. 1158. ISHS 2017. 15 November 2015. [Philipines]. DOI 10.17660/ActaHortic.2017.1158.49.
Pan J, Guo B. 2016. Effects of light intensity on the growth, photosynthetic characteristics, and flavonoid content of Epimedium pseudowushanense B.L.Guo. Molecules. 21, 1475. DOI: 10.3390/molecules21111475
Panwar A, Mathur J. 2019. Genetic and biochemical variability among Moringa oleifera Lam. accessions collected from different agro-ecological zones. Genome. 00: 1-9. DOI: dx.doi.org/10.1139/gen-2019-0102.
Riastiwi I, Damayanto IPGP, Ridwan, Handayani T, Leksonowati A. 2018. Moringa oleifera distribution in Java and Lesser Sunda Islands attributed with annual rainfall. Biosaintifika, 10(3): 613-621. DOI: 10.15294/biosaintifika.v10i3.16115.
Ridwan, Witjaksono. 2020. Induction of autotetraploid moringa plant (Moringa oleifera) using oryzalin. Biodiversitas. 21(9): 4086-4093. DOI: 10.13057/biodiv/d210920.
Rockwood JL, Anderson BG, Casamatta DA. 2013. Potential uses of Moringa oleifera and an examination of antibiotic efficacy conferred by M. oleifera seed and leaf extracts using crude extraction techniques available to underserved indigenous populations. Int. J. Phytotethearpy Res. 3(2): 61-71.
Sarwar M, Ali A, Nouman W, Arshad MI, Patra JK. 2017. Compost and synthetic fertilizer affect vegetative growth and antioxidants activities of Moringa oleifera. Int. J. Agric. Biol. 19: 1293-1300. DOI: 10.17957/IJAB/15.0465.
Sauveur AdS, Broin M, Noamesi S, Amaglo N, Adevu M, Glover-Amengor M, Dosu G, Adjepong P, Adam S, Attipoe P. 2010. Growing and Processing Moringa Leaves. Moringanews/Moringa Association of Ghana, Ghana. Available from: http://www.moringanews.org/documents/moringawebEN.pdf [Accessed 28 September 2018].
Setiawan F, Yunita O, Kurniawan. 2018. Antioxidant Activity Test of Secang Wood Ethanol Extract (Caesalpinia sappan) Using the DPPH, ABTS, and FRAP. MPI. 2(2): 82-89. DOI: https://doi.org/10.24123/mpi.v2i2.
Siddhuraju P, Becker K. 2003. Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam.) leaves. J Agric Food Chem. 51: 2144-2155. DOI: http://dx.doi.org/10.1021/jf020444+
Somers B, Dinissa FF, Wu Q, Simon JE. 2020. Elemental micronutrients, antioxidant activity, total polyphenol, and total flavonoid content of selected spider plant accessions (Cleome gynandra) grown in Eastern Africa and the Eastern United States. JMAP. 9(3): 157-165. DOI: https://doi.org/10.7275/jnrp-3y92.
Turkoglu A, Emin M, Mercan N. 2007. Food chemistry antioxidant and antimicrobial activities of Laetiporus sulphureus (Bull.) Murrill. Food Chem. 101: 267–273. DOI: https://doi.org/10.1016/j.foodchem.2006.01.025.
Vongsak B, Sithisarn P, Mangmool S, Tongpraditchote S, Wongkrajang Y, Gritsanapan W. 2013. Maximizing total phenolics, total flavonoids content and antioxidant activity of Moringa oleifera leaf extract by the appropriate extraction method. Industrial Crops and Products. 44: 566-571. DOI: http://dx.doi.org/10.1016/j.indcrop.2012.09.021.
Wang P, Mu X, Du J, Gao YG, Dai D, Jia L, Zhang J, Ren H, Xue X. 2018. Flavonoid content and radical scavenging activity in fruits of Chinese dwarf cherry (Cerasus humilis) genotypes. J. For. Res. 29(1): 55–63. DOI: https://doi.org/10.1007/s11676-017-0418-3.

Most read articles by the same author(s)

1 2 > >>