The biological prospective of red-pigmented bacteria cultured from contaminated agar media




Abstract. Arifiyanto A, Afriani H, Putri MH, Damayanti B, Riyanto CL. 2021. The biological prospective of red-pigmented bacteria cultured from contaminated agar media. Biodiversitas 22: 1152-1159. Contaminated agar media was often depleted due to the growth of microbes, which is undesirable for culture. However, the contaminating microbes usually have a distinctive morphology. This research aimed to identify the potential of red-pigmented bacteria originated from the contamination of Drosophila melanogaster larvae. Fruit fly larvae that grow on contaminated tryptic soy agar were accompanied by the appearance of the red-pigmented bacteria colony. The bacterial colonies were purified by the re-streaking method on tryptic soybean agar. This strain was characterized morphologically, biochemically, and molecularly. Results showed that the MBC1 strain was identified as Serratia marcescens. The various metal susceptibility tests at 25 ppm did not affect the growth of the MBC1 strain. Meanwhile, it was also able to inhibit the growth of certain pathogens such as Aspergillus niger, Candida sp., Fusarium sp., and Rigidoporous sp. Strain MBC1 was able to produce antioxidant compounds. The lipolytic and amylolytic activity can be developed for bioremediate agriculture waste and biosurfactant production.


Abdulkadir, N. 2017. Bacterial Pigments and its Significance. MOJ Bioequivalence & Bioavailability, 4(3), 285–288.
Abdullah, A. H., Al-Ammiri, H., & Al-Ammiri, H. H. 2017. Isolation and Identification of Serratia marcescens from Bovine Mastitis infections in Iraq and their Susceptibility to Antibiotics. ~ 489 ~ Journal of Entomology and Zoology Studies, 5(2), 489–492.
Araújo, H. W. C., Andrade, R. F. S., Montero-Rodríguez, D., Rubio-Ribeaux, D., Alves Da Silva, C. A., & Campos-Takaki, G. M. 2019. Sustainable biosurfactant produced by Serratia marcescens UCP 1549 and its suitability for agricultural and marine bioremediation applications. Microbial Cell Factories, 18(1), 1–13.
Arifiyanto, A, Apriyanti, F. D., Purwaningsih, P., Kalqutny, S. H., Agustina, D., Surtiningsih, T., Shovitri, M., & Zulaika, E. 2017. Lead (Pb) bioaccumulation; Genera Bacillus isolate S1 and SS19 as a case study. AIP Conference Proceedings.
Arifiyanto, Achmad, Surtiningsih, T., Ni’matuzahroh, Fatimah, Agustina, D., & Alami, N. H. 2020. Antimicrobial activity of biosurfactants produced by actinomycetes isolated from rhizosphere of Sidoarjo mud region. Biocatalysis and Agricultural Biotechnology, 24.
Arivizhivendhan, K. V., Mahesh, M., Boopathy, R., Swarnalatha, S., Regina Mary, R., & Sekaran, G. 2018. Antioxidant and antimicrobial activity of bioactive prodigiosin produces from Serratia marcescens using agricultural waste as a substrate. Journal of Food Science and Technology, 55(7), 2661–2670.
Asnani, A., Ryandini, D., & Suwandri. 2016. Screening of Marine Actinomycetes from Segara Anakan for Natural Pigment and Hydrolytic Activities. IOP Conference Series: Materials Science and Engineering, 107(1).
Azman, A. S., Mawang, C. I., & Abubakar, S. 2018. Bacterial pigments: The bioactivities and as an alternative for therapeutic applications. Natural Product Communications, 13(12), 1747–1754.
Bengtsson-Palme, J., & Larsson, D. G. J. 2016. Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation. Environment International, 86, 140–149.
Bhadra, B., Roy, P., & Chakraborty, R. 2005. Serratia ureilytica sp. nov., a novel urea-utilizing species. International Journal of Systematic and Evolutionary Microbiology, 55(5), 2155–2158.
Bray, T. M. 2000. Dietary antioxidants and assessment of oxidative stress. Nutrition Journal, 16(7–8), 578–581.
Broderick, N. A., & Lemaitre, B. 2012. Gut-associated microbes of Drosophila melanogaster. Gut Microbes, 3(4).
Castro, L. M. G., Alexandre, E. M. C., Pintado, M., & Saraiva, J. A. 2019. Bioactive compounds, pigments, antioxidant activity and antimicrobial activity of yellow prickly pear peels. International Journal of Food Science and Technology, 54(4), 1225–1231.
Chambers, M. C., Jacobson, E., Khalil, S., & Lazzaro, B. P. 2019. Consequences of chronic bacterial infection in Drosophila melanogaster. PLoS ONE, 14(10), 1–22.
Cherif, S., Mnif, S., Hadrich, F., Abdelkafi, S., & Sayadi, S. 2011. Strategy for improving extracellular lipolytic activities by a novel thermotolerant Staphylococcus sp. strain. Lipids in Health and Disease, 10, 1–8.
Devi, K. A., Pandey, P., & Sharma, G. D. 2016. Plant Growth-Promoting Endophyte Serratia marcescens AL2-16 Enhances the Growth of Achyranthes aspera L., a Medicinal Plant. HAYATI Journal of Biosciences, 23(4), 173–180.
Farinati, F., Piciocchi, M., Lavezzo, E., Bortolami, M., & Cardin, R. 2010. Oxidative stress and inducible nitric oxide synthase induction in carcinogenesis. Digestive Diseases, 28(4–5), 579–584.
Federico, A., Morgillo, F., Tuccillo, C., Ciardiello, F., & Loguercio, C. 2007. Chronic inflammation and oxidative stress in human carcinogenesis. Nternational Journal of Cancer, 121(11), 2381–2386.
Filippidou, S., Junier, T., Wunderlin, T., Kooli, W. M., Palmieri, I., Al-Dourobi, A., Molina, V., Lienhard, R., Spangenberg, J. E., Johnson, S. L., Chain, P. S. G., Dorador, C., & Junier, P. (2019). Adaptive strategies in a poly-extreme environment: Differentiation of Vegetative Cells in Serratia ureilytica and Resistance to Extreme Conditions. Frontiers in Microbiology, 10(FEB), 1–13.
García-Fraile, P., Chudí?ková, M., Benada, O., Pikula, J., & Kola?ík, M. 2015. Serratia myotis sp. nov. and Serratia vespertilionis sp. nov., isolated from bats hibernating in caves. International Journal of Systematic and Evolutionary Microbiology.
Garcia-Orozco, K. D., Cinco-Moroyoqui, F., Angulo-Sanchez, L. T., Marquez-Rios, E., Burgos-Hernandez, A., Cardenas-Lopez, J. L., Gomez-Aguilar, C., Corona-Martinez, D. O., Saab-Rincon, G., & Sotelo-Mundo, R. R. 2019. Biochemical characterization of a novel ?/?-hydrolase/FSH from the white shrimp Litopenaeus vannamei. Biomolecules, 9(11).
Gilbert, R., Torres, M., Clemens, R., Hateley, S., Hosamani, R., Wade, W., & Bhattacharya, S. 2020. Spaceflight and simulated microgravity conditions increase virulence of Serratia marcescens in the Drosophila melanogaster infection model. Npj Microgravity, 6(1), 1–9.
Gjorgieva, D., Kadifkova Panovska, T., Ruskovska, T., Ba?eva, K., & Stafilov, T. 2013. Influence of heavy metal stress on antioxidant status and DNA damage in Urtica dioica. BioMed Research International, 2013.
Horinouchi, S., Ueda, K., Nakayama, J., & Ikeda, T. 2010. 4.07 - Cell-to-Cell Communications among Microorganisms (H.-W. (Ben) Liu & L. B. T.-C. N. P. I. I. Mander (eds.); pp. 283–337). Elsevier.
Liu, W., Zhang, K., Li, Y., Su, W., Hu, K., & Jin, S. 2017. Enterococci Mediate the Oviposition Preference of Drosophila melanogaster through Sucrose Catabolism. Scientific Reports, 7(1), 1–14.
Maritim, A. ., Sanders, R. A., & Watkins III, J. B. 2003. Diabetes, oxidative stress, and antioxidants. Journal of Biochemical and Molecular Toxicology, 17(1), 24–38.
Mirjalili, A., Parmoor, E., Moradi Bidhendi, S., & Sarkari, B. 2005. Microbial contamination of cell cultures: A 2 years study. Biologicals, 33(2), 81–85.
Notarte, K. I. R., Devanadera, M. K. P., Mayor, A. B. R., Cada, M. C. A., Pecundo, M. H., & Macabeo, A. P. G. 2019. Toxicity , Antibacterial , and Antioxidant Activities of Fungal Endophytes Colletotrichum and Nigrospora spp . Isolated from Uvaria grandiflora. Philippine Journal of Science, 148(September), 505–512.
Oliveira, D., Borges, A., & Simões, M. 2018. Staphylococcus aureus toxins and their molecular activity in infectious diseases. Toxins, 10(6).
Pais, I. S., Valente, R. S., Sporniak, M., & Teixeira, L. 2018. Drosophila melanogaster establishes a species-specific mutualistic interaction with stable gut-colonizing bacteria. In PLoS Biology (Vol. 16, Issue 7).
Park, R., Dzialo, M. C., Spaepen, S., Nsabimana, D., Gielens, K., Devriese, H., Crauwels, S., Tito, R. Y., Raes, J., Lievens, B., & Verstrepen, K. J. 2019. Microbial communities of the house fly Musca domestica vary with geographical location and habitat. Microbiome, 7(1), 1–12.
Priyatno, T. P., Dahliani, Y. A., Suryadi, Y., Samudra, I. M., Susilowati, D. N., Rusmana, I., Wibowo, B. S., & Irwan, C. 2011. Identifikasi Entomopatogen Bakteri Merah pada Wereng Batang Coklat (Nilaparvata lugens Stål.). Jurnal AgroBiogen, 7(2), 85.
Purkayastha, G. D., Mangar, P., Saha, A., & Saha, D. 2018. Evaluation of the biocontrol efficacy of a Serratia marcescens strain indigenous to tea rhizosphere for the management of root rot disease in tea. PLoS ONE, 13(2), 1–27.
Rostami, H., Hamedi, H., & Yolmeh, M. 2016. Some biological activities of pigments extracted from Micrococcus roseus (PTCC 1411) and Rhodotorula glutinis (PTCC 5257). International Journal of Immunopathology and Pharmacology, 29(4), 684–695.
Sumardi, Farisi, S., Ekowati, C. N., Arifiyanto, A., & Rahmawati, D. E. 2020. Halotolerant Bacillus sp. For mannan degradation isolated from mangrove ecosystem at hanura beach lampung. Journal of Pure and Applied Microbiology, 14(2), 1237–1244.
Sun, A., & Chen, Y. 1998. Oxidative stress and neurodegenerative disorders. Journal of Biomedical Science, 5(6), 401–414.
Suryawanshi, R. K., Patil, C. D., Borase, H. P., Salunke, B. K., & Patil, S. V. 2014. Studies on production and biological potential of prodigiosin by Serratia marcescens. Applied Biochemistry and Biotechnology, 173(5), 1209–1221.
Tristantini, D., Ismawati, A., Pradana, B. T., & Gabriel, J. 2016. Pengujian Aktivitas Antioksidan Menggunakan Metode DPPH pada Daun Tanjung ( Mimusops elengi L ). Prosiding Seminar Nasional Teknik Kimia “Kejuangan” ISSN 1693-4393 Pengembangan Teknologi Kimia Untuk Pengolahan Sumber Daya Alam Indonesia, 2.
Trudgeon, B., Dieser, M., Balasubramanian, N., Messmer, M., & Foreman, C. M. 2020. Low-Temperature Biosurfactants from Polar Microbes. Microorganisms, 8(8), 1183.