The potential of amylase enzyme activity against bacteria isolated from several lakes in East Java, Indonesia




Abstract. Nisa IK, Prabaningtyas S, Lukiati B, Saptawati RT, Rodiansyah A. 2021. The potential of amylase enzyme activity against bacteria isolated from several lakes in East Java, Indonesia. Biodiversitas 21: 42-49. Indonesia is one country that has water resources having an abundance of microbial diversity, but not explored massively. This study aims to measure the amylase activity quantitatively from 53 amylolytic bacterial isolates from Ranu Pani, Ranu Regulo, Ranu Grati, and Ngebel Lake; also it identifies the isolate with the highest amylase enzyme activity. The amylase enzyme activity test calculates with DNS (Dinitrosalycylic acid) method, molecular identification of the highest bacterial isolate is based on the 16S rRNA gene. Its relationship is determined through the phylogenetic tree with the Neighbor-Joining (NJ) method. The results showed that the fifty-three bacterial isolates have amylase activity about 0.000-0.016 units/mL. The KN bacterial isolate from Ranu Ngebel was the highest amylase activity, producing enzyme around 0.016 units/mL, while isolate G20 from Ranu Grati was the lowest, reaching about 0.0001 Unit/mL. Based on the morphological and molecular identification, the KN bacterial isolate is classified as the Bacillus cereus group with 99.4-100% sequence similarity, closely related to Bacillus paramycoides (NR 157734.1).


Apriani, dkk. 2013.Keanekaragaman Zooplankton Berdasarkan Perbedaan Rona Lingkungan Perairan Telaga Ngebel Kabupaten Ponorogo Jawa Timur. Malang : Universitas Negeri Malang
Ballschmitter, m., Futterer, O., dan Liebl, W. 2006. Identification And Characterization Of a Novel Intracelluler Alkaline a-Amylase from The Hyperthermophilic Bacterium Thermotoga Maritima MSB8, Appl. Env. Microbiol. Vol 72(3) : 2206-2211
Basitoh, Y. K. 2018. Eksplorasi Bakteri Amilolitik Potensial dari Ranu Pani, Ranu Regulo, Ranu Grati, dan Telaga Ngebel. Skripsi. Universitas Negeri Malang
Cappuchino, G. J., & Sherman, N. (2004). Food microbiology: a laboratory manual. In Food Microbiology (Vol. 21, Issue 4).
Daffonchio, Cherif, Borin. 2000. Homoduplex And Heteroduplex Polymorphisms Of The Amplified Ribosomal 16s-23s Internal Transcribed Spacers Describe Genetic Relationships In The “Bacillus Cereus Group”. Applied And Environmental Microbiology, 66(12): 5460–5468. 0099-2240/00/$04.0010
Dipali, P. and Argit, P. (2012). Characterization of amylase producing bacterial isolates. Bulletin of Environmental and Life Science, 1(6): 42-47
Hanner R, Floyd R, Bernard A, Collette BB, Shivji M. 2011. DNA barcoding of billfishes. Mitochondrial DNA. 22(SUPPL. 1):27–36. doi:10.3109/19401736.2011.596833.
Johnson J, Spakowicz D, Hong B, Petersen L, Demkowicz, Chen, Leopold, Hanson, Agresta, Gerstein, Sodergren dan Weinstock. 2019. Evaluation of
16S rRNA gene sequencing for species and strain-level microbiome analysis. Nature Communications
Kaneko T, Ohno T, Ohisa N. 2005. Purification And Characterization Of A Thermostable Raw Starch Digesting Amylase From A Streptomyces Sp. Isolated In A Milling Factory, Bioscience, Biotechnology, And Biochemistry, 69:6, 1073-1081, Doi: 10.1271/Bbb.69.1073\
Keeney BJ. 2007. Microorganisms: Applications in Molecular Biology. ENCYCLOPEDIA OF LIFE SCIENCES & 2007, John Wiley & Sons, Ltd.
Lian J, Wijffels H R, Smidt H, Sipkema D. 2018. Microbial Biotechnology. Microbial Biotechnology, 11, 806–818
Liu Y, Du J, Lai Q, Zeng R, Ye D, Xu J, Shao Z. 2017. Proposal of nine novel species of the Bacillus cereus group. int J Syst Evol Microbiol. 67:2499–2508. doi:10.1099/ijsem.0.001821
Miller, G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar.Anal.Chem., 31 : 426-428
Okoh AI. 2006. Biodegradation alternative in the cleanup of petroleum hydrocarbon pollutants. Biotechnol. And Molecular Biology Review 1 (2):38- 50.
Raplong HH., Odeleye, Hammuel, Idoko, Asanato & Odeke. 2014. Production of Alpha Amylase by Bacillus cereus in Submerged Fermentation. Aceh Int. J. Sci. Technol., 3(3): 124-130. doi: 10.13170/aijst.3.3.1592
Rasko DA, Altherr MR, Han CS, Ravel J. 2005. Genomics of the Bacillus cereus group of organisms. FEMS Microbiol Rev. 29:303–329. doi:10.1016/j.femsre.2004.12.005.
Rossi-tamisier M, Benamar S, Raoult D, Fornier P-E. 2014. Cautionary tale of using 16S rRNA gene sequence similarity values in identification of
human-associated bacterial species. Int J Syst Evol Microbiol. 65:1929–1934. doi:10.1099/ijs.0.000161.
Sazci A. Radforda A. & Erenler K. 1986. Detection of Cellulolytic Fungi by Using Congo red as an Indicator: a Comparative Study with The Dinitrosalicyclic Acid Reagent Method. Journal of Applied Bacteriology 61. 559-562.
Silaban, S, Marika B D, Simorangkir M. 2020. Isolation and Characterization of Amylase-Producing Amylolytic Bacteria from Rice Soil Samples. Journal of Physics: Conference Series. 1485 012006
Silitonga, Nursyirwani, Effendi. 2019. Isolation, Identification And Sensitivity Of Amilolitic Bacteria From Mangrove Ecosystem Sediment In Purnama Marine Station Dumai On The Pathogenic Bacteria. Asian Journal Of Aquatic Sciences. 2(3) 257-266
Soeka, Yati Sudaryati. 2010. Optimasi Dan Karakterisasi A-Amilase Dari Isolat Aktinomisetes Yang Berasal Dari Kalimantan Timur. Berita Biologi. 10(3)
Souza MP & Magalhaes OP. 2010. APPLICATION OF MICROBIAL _-AMYLASE IN INDUSTRY – A REVIEW. Brazilian Journal of Microbiology (2010) 41: 850-861 ISSN 1517-8382
Srinivasan R, Karaoz U, Volegova M, MacKichan J, Kato-Maeda M, Miller S, Nadarajan R, Brodie EL, Lynch S V. 2015. Use of 16S rRNA gene for
identification of a broad range of clinically relevant bacterial pathogens. PLoS One. 10(2):1–22. doi:10.1371/journal.pone.0117617.
Woo PCY, Teng JLL, Wu JKL, Leung FPS, Tse H, Fung AMY, Lau SKP, Yuen KY. 2009. Guidelines for interpretation of 16S rRNA gene sequence-based results for identification of medically important aerobic Gram-positive bacteria. J Med Microbiol. 58(8):1030–1036. doi:10.1099/jmm.0.008615-0