Distribution, variation, and relationship of Curcuma soloensis Valeton in Java, Indonesia based on morphological characters
##plugins.themes.bootstrap3.article.main##
Abstract
Abstract. Jalil M, Purwantoro A, Daryono BS, Purnomo. 2020. Distribution, variation, and relationship of Curcuma soloensis Valeton in Java, Indonesia based on morphological characters. Biodiversitas 21: 3867-3877. Curcuma soloensis Valeton (locally called temu genyeh) was a plant originating from Solomon Islands and was synonymous with Curcuma longa L. This plant was often considered to be turmeric (Curcuma longa Linn.) or temulawak (Curcuma zanthorrhiza Roxb.), because the rhizome is almost the same color. The purpose of this study was to determine the distribution, variation, and relationship of C. soloensis in Java, Indonesia. Retrieval of data with exploratory roaming methods in 12 districts/cities in Java Island as a center for planting medicinal plants. Morphological character observations were made on habit, rhizome, roots, tubers, leaves, pseudo-stems, and flowers. Morphological data were analyzed by descriptive and numerical methods. Analysis of grouping with Gower Coefficients because it uses 45 binary and multistate data. Principal Component Analysis (PCA) was performed to determine the role of each character in the grouping. Cluster analysis and PCA graphics were assisted with MVSP 3.1 software. The results of the study were obtained from 25 accessions of C. soloensis in East Java (Trenggalek, Pacitan, Ponorogo), Central Java (Wonogiri, Karanganyar, Magelang, Semarang), Yogyakarta (Yogyakarta City, Bantul, Gunungkidul), and West Java (Ciamis and Tasikmalaya). The variation of C. soloensis lies in habit, stem color, leaf shape, rhizome shape, rhizome flesh color, and tuber shape. The highest abundance percentage is in Pajangan, Tirtomoyo, and Tawangmangu. The dendrogram divides 32 OTUs into two clusters on the phenon line 0.617, namely cluster A (C. zanthorrhiza) and cluster B (C. soloensis and C. longa). PCA results showed that the characters that had the most role in grouping were leaf blade color, leaf blade length, rhizome shape, root color, rhizome taste, outer and inner rhizome flesh color.
##plugins.themes.bootstrap3.article.details##
Apavatjrut, P., Anuntalabhochai, S., Sirirugsa, P., & Alisi, C. 1999. Molecular markers in the identication of some early flowering Curcuma L. (Zingiberaceae) species. Annals of botany, 84: 529–534.
Backer, & van den Brink, B. 1968. Flora of java (spermatophytes only): Vol. III. The Auspices of the Rukserbarium, Leyden.
Barbour, M. G., Burk, J. H., Pitts, W. D., Gilliam, F. S., & Schwartz, M. W. 1999. Terrestrial Plant Ecology. Addison Wesley Longman, University of Illinois at Urbana-Champaign.
Bos, R., Windono, T., Woerdenbag, H. J., Boersma, Y. L., Koulman, A., & Kayser, o. 2007. HPLC?photodiode array detection analysis of curcuminoids in Curcuma species indigenous to Indonesia. Phytochemical analysis, 18(2): 118–122.
Chaveerach, A., Sudmoon, R., Tanee, T., Sattayasai, N., & Sattayasai, J. 2007. A new species of the genus Curcuma L., Zingiberaceae. Acta phytotaxonomica et geobotanica, 58(2_3): 78–82.
Diastuti, H., Asnani, A., & Chasani, M. 2019. Antifungal activity of curcuma xanthorrhiza and curcuma soloensis extracts and fractions. Iop conference series: materials science and engineering, 509: 012047.
Delin, W., & Larsen, K. 2000. Zingiberaceae. Flora of China, 24: 322–377.
Hayakawa, H., Minaniya, Y., Ito, K., Yamamoto, Y., & Fukuda, T. 2011. Difference of curcumin content in Curcuma longa L.(Zingiberaceae) caused by hybridization with other Curcuma species. American journal of plant sciences, 2: 111–119.
Jantan, I., Saputri, F. C., Qaisar, M. N., & Buang, F. 2012. Correlation between Chemical Composition of Curcuma domestica and Curcuma xanthorrhiza and Their Antioxidant Effect on Human Low-Density Lipoprotein Oxidation. Evidence - Based Complementary and Alternative Medicine; New York, 2012: 1–10.
Kocaadam, B., & ?anlier, N. 2017. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Critical Reviews in Food Science and Nutrition, 57(13): 2889–2895.
Kress, W. J., Prince, L. M., & Williams, K. J. 2002. The phylogeny and a new classification of the gingers (Zingiberaceae): evidence from molecular data. American Journal of Botany, 89(10): 1682–1696.
Li, S., Yuan, W., Deng, G., Wang, P., Yang, P., & Aggarwal, B. B. 2011. Chemical composition and product quality control of turmeric (curcuma longa l.). Pharmaceutical crops, 5(1): 28–54.
Marliyana, S. D., Wartono, M. W., Wibowo, F. R., & Munasah, G. 2018. Isolasi dan identifikasi senyawa seskuiterpen dari Curcuma soloensis Val. (Temu Glenyeh). Jurnal Kimia Valensi, 4(2): 137–142.
Mishra, J., Bhardwaj, A., & Misra, K. 2018. Curcuma sp.: the nature’s souvenir for high-altitude illness. In management of high altitude pathophysiology (pp. 153–169). Elsevier.
Mohanty, S., Panda, M. K., Acharya, l., & Nayak, S. 2014. Genetic diversity and gene differentiation among ten species of Zingiberaceae from Eastern India. 3 biotech, 4(4): 383–390.
Purnomo, Malikah, & Maryani. 2018. Diversity and phenetic analysis of tomboreso (Dioscorea pentaphylla L.) in Yogyakarta based on morphological and leaf anatomical characters. Aip Conference Proceedings, 2002(1), 020049.
Rahman, M. A., & Yusuf, M. 2012. Three new species of curcuma l. (Zingiberaceae) from Bangladesh. Bangladesh journal of plant taxonomy, 19(1), 79–84.
Roemantyo, R. 2000. Analisis distribusi spasial marga Curcuma di Jawa (spatial distribution analyses of Curcuma in Jawa). Jurnal berita biologi, 5(2): 203–215.
Sasikumar, B. 2005a. Genetic resources of Curcuma: diversity, characterization and utilization. Plant genetic resources, 3(2): 230–251.
Setiadi, D. 2005. Keanekaragaman Spesies Tingkat Pohon di Taman Wisata Alam Ruteng, Nusa Tenggara Timur. Biodiversitas, 6(2): 11–122.
Silva, A. B. W. R., Herath, H., Senanayake, S. P., & Swarnathilaka, D. B. R. 2018. Phenetic and genetic characterization of selected economically important species in the family Zingiberaceae. Sri lankan journal of biology, 3(1): 34–43.
Sirirugsa, P. 1998. Thai Zingiberaceae: Species Diversity and Their Uses. Pure Appl. Chem, 70(11), 1–8.
Sirirugsa, P, Larsen, K., & Maknoi, C. 2007. The Genus Curcuma L. (Zingiberaceae): Distribution and Classification with Reference to Species Diversity in Thailand. Distribution and Species Diversity of Gardens’ Bulletin Singapore, 59(1 & 2): 203–220.
Skornickova, J., & Sabu, M. 2005. Article: The identity and distribution of Curcuma zanthorrhiza roxb.(Zingiberaceae). Garden bulletin singapore, 57: 199–210.
Subositi, D., & Wahyono, S. 2019. Study of the genus Curcuma in Indonesia used as traditional herbal medicines. Biodiversitas, 20(5), 1356–1361.
Sungkawati, M., Hidayati, L., Daryono, B. S., & Purnomo. 2019. Phenetic analysis of curcuma spp. In Yogyakarta, Indonesia based on morphological and anatomical characters. Biodiversitas journal of biological diversity, 20(8): 2340–2347.
Stevens, R. D., & Tello, J. S. 2014. On the measurement of dimensionality of biodiversity. Global Ecology and Biogeography, 23(9/10), 1115–1125.
Uma, E., & Muthukumar, T. 2014. Comparative root morphological anatomy of Zingiberaceae. Systematics and biodiversity, 12(2): 195–209.
Vitasari, R. A., Wibowo, F. R., Marliyana, S. D., & Wartono, M. W. 2016. Isolation and identification of curcumin and bisacurone from rhizome extract of Temu Glenyeh (Curcuma soloensis Val). Iop conference series: materials science and engineering, 107: 012063.
Yan, j. X. 2010. Study on cross-breeding and molecular genetics of the genus curcuma. Zhongkai university of agriculture and engineering.
Zhang, S., Liu, N., Sheng, A., Ma, G., & Wu, G. 2011. Direct and callus-mediated regeneration of Curcuma soloensis Valeton (Zingiberaceae) and ex vitro performance of regenerated plants. Scientia horticulturae, 130(4): 899–905.
Most read articles by the same author(s)
- RISKY NURHIKMAYANI, BUDI SETIADI DARYONO, ENDAH RETNANINGRUM, Isolation and molecular identification of antimicrobial-producing Lactic Acid Bacteria from chao, South Sulawesi (Indonesia) fermented fish product , Biodiversitas Journal of Biological Diversity: Vol. 20 No. 4 (2019)
- SUYITNO ALOYSIUS, AZIZ PURWANTORO, KUMALA DEWI, ENDANG SEMIARTI, Improvement of genetic variability in seedlings of Spathoglottis plicata orchids through X-ray irradiation , Biodiversitas Journal of Biological Diversity: Vol. 18 No. 1 (2017)
- FEBRIYANTI VERA, WORAWIDH WAJJWALKU, PRAMANA YUDA, BUDI SETIADI DARYONO, Short Communication: A new primer set in CHD1 gene for bird sex identification , Biodiversitas Journal of Biological Diversity: Vol. 22 No. 11 (2021)
- HASTUTI HASTUTI, PURNOMO PURNOMO, I SUMARDI, BUDI S DARYONO, Diversity wild banana species (Musa spp.) in Sulawesi, Indonesia , Biodiversitas Journal of Biological Diversity: Vol. 20 No. 3 (2019)
- MULYA SUNGKAWATI, L. HIDAYATI, B.S. DARYONO, PURNOMO, Phenetic analysis of Curcuma spp. in Yogyakarta, Indonesia based on morphological and anatomical characters , Biodiversitas Journal of Biological Diversity: Vol. 20 No. 8 (2019)
- DYAH WENY RESPATIE, PRAPTO YUDONO, AZIZ PURWANTORO, Y. ANDI TRISYONO, The potential of Cosmos sulphureus flower extract as a bioherbicide for Cyperus rotundus , Biodiversitas Journal of Biological Diversity: Vol. 20 No. 12 (2019)
- OZIE AKBAR PRATAMA, WORO ANINDITO SRI TUNJUNG, SUTIKNO SUTIKNO, BUDI SETIADI DARYONO, Bioactive compound profile of melon leaf extract (Cucumis melo L. ‘Hikapel’) infected by downy mildew , Biodiversitas Journal of Biological Diversity: Vol. 20 No. 11 (2019)
- Siti Yuli Meilanda Sormin, Aziz Purwantoro, Agus Budi Setiawan, Chee How Teo, Application of inter-SINE amplified polymorphism (ISAP) markers for genotyping of Cucumis melo accessions and its transferability in Coleus spp , Biodiversitas Journal of Biological Diversity: Vol. 22 No. 5 (2021)