Spectral observation of agarwood by infrared spectroscopy: The differences of infected and normal Aquilaria microcarpa

##plugins.themes.bootstrap3.article.main##

DANANG SUDARWOKO ADI
SUNG-WOOK HWANG
DWI AJIAS PRAMASARI
YUSUP AMIN
BERNADETA AYU WIDYANINGRUM
TEGUH DARMAWAN
ERIS SEPTIANA
WAHYU DWIANTO
JUNJI SUGIYAMA

Abstract

Abstract. Adi DS, Hwang SW, Pramasari DA, Amin Y, Widyaningrum BA, Darmawan T, Septiana E, Dwianto W, Sugiyama J. 2020. Spectral observation of agarwood by infrared spectroscopy: The differences of infected and normal Aquilaria microcarpa. Biodiversitas 21: 2893-2899. This study was conducted to evaluate and to determine the potential spectral band assignments that influenced the differentiation of normal and infected agarwood of Aquilaria microcarpa using Fourier Transform Infrared Spectroscopy (FTIR) and Fourier Transform Near-Infrared Spectroscopy (FTNIR). The results showed that the differences in band intensity on FTIR were identified as C=O stretching (lignin), COO-stretching (hemicellulose), aromatic skeletal vibration (lignin), and C-H bending vibration. The increasing absorbances of infected agarwood were supposed as the change on the wood tissues due to the releasing resinous compound. The C-O bond (aromatic alkane) and stretching (ether), C-C stretching (aromatic alkane), and C-H bond (aromatic ring) which related to the scented fragrance of agarwood have appeared on the FTIR spectra. Multivariate analysis with principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA) of the second derivative NIR spectra at the wavenumber 8,000-4,000 cm-1 showed that normal and infected agarwood was successful to be separated. Discriminant model one-on-one classification exhibited good performances as the R2 performance (R2P) values was 0.99. There were eight major wood components which contributed to the separation based on NIR spectra, where lignin, hemicellulose, and xylans were the most valuable chemical compound.

##plugins.themes.bootstrap3.article.details##

References
Azren, P. D., Lee, S. Y., Emang, D., & Mohamed, R. 2019. History and perspectives of induction technology for agarwood production from cultivated Aquilaria in Asia: a review. Journal of Forestry Research, 30(1), 1–11. https://doi.org/10.1007/s11676-018-0627-4
Badan Standardisasi Nasional. (2011). SNI 7631. Gaharu. Jakarta.
Chen, H., Yang, Y., Xue, J., Wei, J., Zhang, Z., & Chen, H. 2011. Comparison of Compositions and Antimicrobial Activities of Essential Oils from Chemically Stimulated Agarwood, Wild Agarwood and Healthy Aquilaria sinensis (Lour.) Gilg Trees, 4884–4896. https://doi.org/10.3390/molecules16064884
Dwianto, W., Kusumah, S. S., Darmawan, T., Amin, Y., Bahanawan, A., Pramasari, D. A., … Damayanti, R. 2019. Anatomical observation and characterization on basic properties of Agarwood (Gaharu) as an Appendix II CITES. In IOP Conference Series: Earth and Environmental Science (Vol. 374, pp. 1–9). https://doi.org/10.1088/1755-1315/374/1/012062
Faix, O., & Binhoff, O. 1988. FTIR spectra of milled wood lignins and lignin polymer models (DHP’s) with enhanced resolution obtained by deconvolution. Journal of Wood Chemistry and Technology, 8(4), 505–522. https://doi.org/10.1080/02773818808070698
Faizal, A., Esyanti, R. R., Aulianisa, E. N., Iriawati, Santoso, E., & Turjaman, M. 2017. Formation of agarwood from Aquilaria malaccensis in response to inoculation of local strains of Fusarium solani. Trees - Structure and Function, 31(1), 189–197. https://doi.org/10.1007/s00468-016-1471-9
Gebreselassie, M. N., Ader, K., Boizot, N., Millier, F., Charpentier, J. P., Alves, A., … Segura, V. 2017. Near-infrared spectroscopy enables the genetic analysis of chemical properties in a large set of wood samples from Populus nigra (L.) natural populations. Industrial Crops and Products, 107, 159–171. https://doi.org/10.1016/j.indcrop.2017.05.013
Gierlinger, N., Schwanninger, M., & Wimmer, R. 2004. Characteristics and classification of Fourier-transform near infrared spectra of the heartwood of different larch species (Larix sp.). Journal of Near Infrared Spectroscopy, 12(2), 113–119. https://doi.org/10.1255/jnirs.415
Herawati, C., Batubara, R., Batara, E., & Siregar, M. 2009. Wood Chemical Changes in Gubal Agarwood ( Aquilaria malaccensis Lamk .) Engineered. Peronema Forestry Science Journal, 2(1), 117–125.
Hoque, M., Mondal, M., & Khan, M. 2019. Insect Infested Agarwood: A newly prized product of agarwood market in Bangladesh. Fundamental and Applied Agriculture, 4(1), 689. https://doi.org/10.5455/faa.1693
Hori, R., & Sugiyama, J. 2003. A combined FT-IR microscopy and principal component analysis on softwood cell walls. Carbohydrate Polymers, 52, 449–453. https://doi.org/10.1016/S0144-8617(03)00013-4
Horikawa, Y., Hirano, S., Mihashi, A., & Kobayashi, Y. 2019. Prediction of Lignin Contents from Infrared Spectroscopy?: Chemical Digestion and Lignin / Biomass Ratios of Cryptomeria japonica.
Horikawa, Y., Mizuno-Tazuru, S., & Sugiyama, J. 2015. Near-infrared spectroscopy as a potential method for identification of anatomically similar Japanese diploxylons. Journal of Wood Science, 61, 251–261. https://doi.org/10.1007/s10086-015-1462-2
Hwang, S. W., Horikawa, Y., Lee, W. H., & Sugiyama, J. 2016. Identification of Pinus species related to historic architecture in Korea using NIR chemometric approaches. Journal of Wood Science, 62(2), 156–167. https://doi.org/10.1007/s10086-016-1540-0
Ito, N., Okubo, N., & Kurata, Y. 2019. Nondestructive near-infrared spectroscopic analysis of oils on wood surfaces. Forests, 10(1), 1–7. https://doi.org/10.3390/f10010064
Liu, Y., Chen, H., Yang, Y., Zhang, Z., Wei, J., Meng, H., … Chen, H. 2013. Whole-tree agarwood-inducing technique: An efficient novel technique for producing high-quality agarwood in cultivated Aquilaria sinensis trees. Molecules, 18(3), 3086–3106. https://doi.org/10.3390/molecules18033086
López-Sampson, A., & Page, T. (2018). History of Use and Trade of Agarwood. Economic Botany, 72(1), 107–129. https://doi.org/10.1007/s12231-018-9408-4
Nasardin, N. R. M., Hanafiah, M. A. M., Zainon, M., Ibrahim, M., Rahman, A. I. A., Baharudin, Z. A., … Zulkefle, A. A. 2018. Comparison of chemical compounds of essential oils from natural agarwood and inoculated agarwood (Roselle-based inoculation). Indonesian Journal of Electrical Engineering and Computer Science, 11(2), 677–681. https://doi.org/10.11591/ijeecs.v11.i2.pp677-681
Novriyanti, E., Santosa, E., Syafii, W., Turjaman, M., & Sitepu, I. R. 2010. Anti Fungal Activity of Wood Extract of Aquilaria crassna Pierre ex Lecomte Against Agarwood-Inducing Fungi, Fusarium solani. Indonesian Journal of Forestry Research, 7(2), 155–165. https://doi.org/10.20886/ijfr.2010.7.2.155-165
Pasaribu, G., Waluyo, T. K., & Pari, G. 2015a. Analysis of Chemical Compounds Distinguisher for Agarwood Qualities. Indonesian Journal of Forestry Research, 2(1), 1–7. https://doi.org/10.20886/ijfr.2015.2.1.1-7
Pasaribu, G., Kartono Waluyo, T., & Pari, G. 2015b. Keragaman Komponen Kimia Gaharu Pada Kelas Super Dan Kemedangan. Jurnal Penelitian Hasil Hutan, 33(3), 247–252. https://doi.org/10.20886/jphh.v33i3.923.247-252
Popescu, C. M., Navi, P., Placencia Peña, M. I., & Popescu, M. C. 2018. Structural changes of wood during hydro-thermal and thermal treatments evaluated through NIR spectroscopy and principal component analysis. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 191, 405–412. https://doi.org/10.1016/j.saa.2017.10.045
Putro, E. W., Septiana, E., Ridwanuloh, A. M., & Syahputra, G. 2019. Identifikasi Pola Fingerprint dan Komposisi Senyawa Kimia untuk Membedakan Kualitas Gaharu Jenis Gyrinops verstegii dari Beberapa Lokasi di Nusa Tenggara Barat. In D. Dwibadra, D. C. Murniati, R. Rachmatika, I. P. G. P. Damayanto, N. Inayah, J. G. Sukmawati, & A. D. Prawestri (Eds.), Prosiding Seminar Nasional Konservasi dan pemanfaatan tumbuhan dan Satwa Liar (Vol. 4, pp. 182–191). Bogor: Pusat Penelitian Biologi, lembaga Ilmu Pengetahuan Indonesia.
Sandak, J., Sandak, A., & Meder, R. 2016. Assessing trees, wood and derived products with near infrared spectroscopy: Hints and tips. Journal of Near Infrared Spectroscopy, 24(6), 485–505. https://doi.org/10.1255/jnirs.1255
Savitzky, A., & Golay, M. J. E. 1964. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal Chem, 36(8), 1627–1639. https://doi.org/10.1021/ac60214a047
Schwanninger, M., Carlos, J., & Fackler, K. 2011. A review of band assignments in near infrared spectra of wood and wood. J. Near Infrared Spectroscopy, 19, 287–308. https://doi.org/10.1255/jnirs.955
Traoré, M., Kaal, J., & Martínez Cortizas, A. 2018. Differentiation between pine woods according to species and growing location using FTIR-ATR. Wood Science and Technology, 52(2), 487–504. https://doi.org/10.1007/s00226-017-0967-9
Tsuchikawa, S., & Kobori, H. 2015. A review of recent application of near infrared spectroscopy to wood science and technology. Journal of Wood Science, 61(3), 213–220. https://doi.org/10.1007/s10086-015-1467-x
Wang, M., Li, W., Luo, S., & Zhao, X. 2018. GC-MS Study of the Chemical Components of Different Aquilaria sinensis ( Lour .) Gilgorgans and Agarwood from Different Asian Countries. https://doi.org/10.3390/molecules23092168
Wang, S., Yu, Z., Wang, C., Wu, C., & Guo, P. 2018. Chemical Constituents and Pharmacological Activity of Agarwood and Aquilaria Plants. https://doi.org/10.3390/molecules23020342
Wulansari, D., Fathoni, A., & Agusta, A. 2019. Analisis Sidik Jari Kromatografi GasSpektrometri Massa dari Metabolit Jenis Penghasil Gaharu di Provinsi Bengkulu. In D. Dwibadra, D. C. Murniati, R. Rachmatika, I. P. G. P. Damayanto, N. Inayah, J. G. Sukmawati, & A. D. Prawestri (Eds.), Prosiding Seminar Nasional Konservasi dan pemanfaatan tumbuhan dan Satwa Liar (pp. 320–325). Bogor: Pusat Penelitian Biologi, lembaga Ilmu Pengetahuan Indonesia.
Yin, Y., Jiao, L., Dong, M., Jiang, X., & Zhang, S. 2016. Wood Resources, Identification, and Utilization of Agarwood in China. In R. Muhamed (Ed.), Agarwood, Tropical Forestry. Singapore: Springer Science+Business Media Singapore. https://doi.org/10.1007/978-981-10-0833-7