Molecular identification of bacteria isolated from culture medium of rotifer fed on fishery waste diet

##plugins.themes.bootstrap3.article.main##

STENLY WULLUR
HATOPAN NAPITUPULU
LETHA LOISE WANTANIA
ELVY LIKE GINTING
VEIBE WAROUW
SANDRA TILAAR
TRINA EKAWATI TALLEI
INNEKE FENNY MELKE RUMENGAN

Abstract

Abstract. Wullur S, Napitupulu H, Wantania LL, Ginting EL, Warouw V, Tallei TE, Rumengan IFM. 2020. Molecular identification of bacteria isolated from culture medium of rotifer fed on fishery waste diet. Biodiversitas 21: 2735-2740. The aim of this study was 16S-rRNA sequences based molecular identification of bacteria isolated from culture medium of rotifer fed with fishery waste diet (FWD). We cultured rotifer Brachionus rotundiformis in sterilized seawater (salinity 25 ppt) using FWD, following the procedure in Patent No. P00201609066. Bacteria from the culture were collected, homogenized, diluted 10 to 1000 fold, spread on agar plates and incubated at 370C for 24 to 48 hours. Representative colonies of the bacteria according to their morphologies were isolated for further characterization. Genomic DNA of the isolates were extracted, and the 16S rRNA gene of the isolates were amplified. Polymerase Chain Reaction (PCR) product of each isolate was sequenced and queried against the NCBI GenBank database. Six different isolates based on size, color, elevation, margin, and colony were observed during 24-48 hours incubation at 370C. The 16S rRNA genes of the six isolates were successfully amplified and produced DNA band at 1300-1500 bp, with quality value equal to or greater than 20 (QV20+) of each entire sequence around 941-1253 bases. Basic Local Alignment Search Tool (BLAST) queries in the NCBI GenBank and EzBioCloud database using the 16S-rRNA gene sequences showed that the six isolates belong to four different genera, i.e: Bacillus, Staphylococcus, Vibrio, and Alteromonas.

##plugins.themes.bootstrap3.article.details##

References
Acién, F. G., Molina, E., Fernández-Sevilla, J. M., Barbosa, M., Gouveia, L., Sepúlveda, Sepulveda C., Bazaes J., and Arbib, Z. 2017. Economics of microalgae production. In Microalgae-based biofuels and bioproducts (pp. 485-503). Woodhead Publishing.
Arndt, H. 1993. Rotifers as predators on components of the microbial web (bacteria, heterotrophic flagellates, ciliates)—a review. In Rotifer Symposium VI (pp. 231-246). Springer, Dordrecht.
Barbeyron, T., Zonta, E., Le Panse, S., Duchaud, E., & Michel, G. 2019. Alteromonas fortis sp. nov., a non-flagellated bacterium specialized in the degradation of iota-carrageenan, and emended description of the genus Alteromonas. International Journal of Systematic and Evolutionary Microbiology, Microbiology Society, 2019, 69 (8), pp.2514-2521. ff10.1099/ijsem.0.003533
Bottone, E. J. 2010. Bacillus cereus, a volatile human pathogen. Clinical microbiology reviews, 23(2), 382-398.
Chandran, M. N., Iyapparaj, P., Moovendhan Ramasubburayan, R., Prakash, S., and Immanuel, G. 2014. Influence of probiotic bacterium Bacillus cereus isolated from the gut of wild shrimp Penaeus monodon in turn as a potent growth promoter and immune enhancer in P. monodon. Fish Shellfish Immunol., 36: 38–45.
Chowdhury, P. R., Boucher, Y., Hassan, K. A., Paulsen, I. T., Stokes, H. W., & Labbate, M. 2011. Genome sequence of Vibrio rotiferianus strain DAT722.
Clément, P. 1987. Movements in rotifers: correlations of ultrastructure and behavior. In Rotifer Symposium IV (pp. 339-359). Springer, Dordrecht.
Divya, M., Aanand, S., Srinivasan, A., and Ahilan. 2015. B. Bioremediation – An eco-friendly tool for effluent treatment: a review. Int. J. Appl. Res., 1: 530–537
Douillet, P. A. 2000. Bacterial additives that consistently enhance rotifer growth under synxenic culture conditions: 1. Evaluation of commercial products and pure isolates. Aquaculture, 182(3-4), 249-260.
Gallardo, W. G., Hagiwara, A., Tomita, Y., Soyano, K., and Snell, T. W. 1997. Effect of some vertebrate and invertebrate hormones on the population growth, mictic female production, and body size of the marine rotifer Brachionus plicatilis Müller. Hydrobiologia, 358(1-3), 113-120.
Gallardo, W. G., Hagiwara, A., and Snell, T. W. 2000. Effect of juvenile hormone and serotonin (5-HT) on mixis induction of the rotifer Brachionus plicatilis Muller. Journal of experimental marine biology and ecology, 252(1), 97-107.
Gomez, B., Thompson, F. L., Thompson, C. C., and Swings, J. 2003. Vibrio rotiferianus sp. nov., isolated from cultures of the rotifer Brachionus plicatilis. International Journal of Systematic and Evolutionary Microbiology, 53(1), 239-243.
Haché, R., and Plante, S. 2011. The relationship between enrichment, fatty acid profiles and bacterial load in cultured rotifers (Brachionus plicatilis L-strain) and Artemia (Artemia salina strain Franciscana). Aquaculture, 311(1-4), 201-208.
Hagiwara, A., Kim, H. J., and Marcial, H. 2017. Mass culture and preservation of Brachionus plicatilis sp. complex. In: Hagiwara A, Yoshonaga T. (eds) Rotifers aquaculture, ecology, gerontology, and ecotoxicology. Springer, Singapore.
Hagiwara, A., Kotani, T., Snell, T. W., Assava-Aree, M., and Hirayama, K. 1995. Morphology, reproduction, genetics, and mating behavior of small, tropical marine Brachionus strains (Rotifera). Journal of experimental marine biology and ecology, 194(1), 25-37.
Hagiwara, A., Snell, T. W., Lubzens, E., and Tamaru, C. S. 1997. Live food in aquaculture. Developments in Hydrobiology, 124, 328.
Hagiwara, A., Gallardo, W. G., Assavaaree, M., Kotani, T., and De Araujo, A. B. 2001. Live food production in Japan: recent progress and future aspects. Aquaculture, 200(1-2), 111-127.
Hagiwara, A., Suga, K., Akazawa, A., Kotani, T., and Sakakura, Y. 2007. Development of rotifer strains with useful traits for rearing fish larvae. Aquaculture, 268(1-4), 44-52.
Hagiwara, A., Wullur, S., Marcial, H. S., Hirai, N., and Sakakura, Y. 2014. Euryhaline rotifer Proales similis as initial live food for rearing fish with small mouth. Aquaculture, 432, 470-474.
Hagiwara, A., Hamada, K., Hori, S., and Hirayama, K. 1994. Increased sexual reproduction in Brachionus plicatilis (Rotifera) with the addition of bacteria and rotifer extracts. Journal of Experimental Marine Biology and Ecology, 181(1), 1-8.
Hagiwara, A., Balompapueng, M. D., Munuswamy, N., and Hirayama, K. 1997. Mass production and preservation of the resting eggs of the euryhaline rotifer Brachionus plicatilis and B. rotundiformis. Aquaculture, 155(1-4), 223-230.
Hansen, G. H., Strøm, E., & Olafsen, J. A. 1992. Effect of different holding regimens on the intestinal microflora of herring (Clupea harengus) larvae. Appl. Environ. Microbiol., 58(2), 461-470.
Haryanti, H., Sugama, K., Tsumura, S., & Nishijima, R. 2017. Enhance production of black tiger shrimp Penaeus monodon postlarvae by probiotic bacterium Alteromonas sp. Indonesian Fisheries Research Journal, 7(1), 1-6.
He, R. P., Feng, J., Tian, J. L., Dong, S. L., and Wen, B. 2017. Effects of dietary supplementation of probiotics on the growth, activities of digestive and non-specific immune enzymes 8 in hybrid grouper (Epinephelus lanceolatus and Epinephelus fuscoguttatus). Aquac. Res., 48: 5782–5790.
Hirata, H., and Mori, Y., 1967. Culture of rotifer Brachionus plicatilis fed on baker’s yeast. Saibai Gyogyo 5,36–40 (in Japanese)
Hirata, H., 1980. Culture methods of the marine rotifer, Brachionus plicatilis. Min. Rev. Data File Fish. Res. Kagoshima Univ. 1, 27-46
Hirata, H., Murata, O., Yamada, S., Ishitani, H., & Wachi, M. 1998. Probiotic culture of the rotifer Brachionus plicatilis. In Rotifera VIII: A Comparative Approach (pp. 495-498). Springer, Dordrecht.
Hirayama, K. 1987. A consideration of why mass culture of the rotifer Brachionus plicatilis with baker’s yeast is unstable. In Rotifer Symposium IV (pp. 269-270). Springer, Dordrecht.
Hirayama, K., Maruyama, I., and Maeda, T. 1989. Nutritional effect of freshwater Chlorella on growth of the rotifer Brachionus plicatilis. In Rotifer Symposium V (pp. 39-42). Springer, Dordrecht.
Ito T, 1960. On the culture of mixohaline rotifer Brachionus plicatilis O. F. Müller in the sea water. Rep Fac Fish Prefectural Univ Mie 3:708–740. (in Japanese).
Irianto, A., & Austin, B. 2002. Probiotics in aquaculture. Journal of fish diseases, 25(11), 633-642.
Murillo I, Villamil L 2011. Bacillus cereus and Bacillus subtilis used as probiotics in rotifer (Brachionus plicatilis) cultures. J Aquac Res Development S1:007. doi:10.4172/2155-9546.S1-007
Janda, J. M., and Abbott, S. L. 2007. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. Journal of clinical microbiology, 45(9), 2761-2764.
Kesarcodi-Watson, A., Kaspar, H., Lategan, M. J., & Gibson, L. 2010. Alteromonas macleodii 0444 and Neptunomonas sp. 0536, two novel probiotics for hatchery-reared Greenshell™ mussel larvae, Perna canaliculus. Aquaculture, 309(1-4), 49-55.
Kim, M., H-S. Oh, S-C. Park, and J. Chun, 2014. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes Int. J. Syst. Evol. Microb. 64:346-351. DOI10.1099/ijs.0.059774-0
Kitajima, C., Arakawa, T., Oowa, F., Fujita, S., Imada, O., Watanabe, T., Yone, Y. 1980. Dietary value for Red Sea bream larvae of rotifer Brachionus plicatilis cultured with a new type of yeast. Bulletin of the japanese society of scientific fisheries, 46(1), 43-46.Lubzens, E., Tandler, A., and Minkoff, G. 1989. Rotifers as food in aquaculture. Hydrobiologia, 186(1), 387-400.
Kotani T. 2017. The current status of the morphological classification of rotifer strain used in aquaculture. In: Hagiwara A, Yoshonaga T. (eds) Rotifers aquaculture, ecology, gerontology, and ecotoxicology. Springer, Singapore.
Lee, M. C., Park, J. C., Yoon, D. S., Choi, H., Shin, K. H., Kim, H. J, Hagiwara A and Lee, J. S. 2019. Lipid metabolism modulation by five different food types in the monogonont marine rotifer Brachionus koreanus. Aquaculture, 503, 596-601.
Lie, O., Haaland, H., Hemre, G. I., Maage, A., Lied, E., Rosenlund, G., Sadnes K, and Olsen, Y. 1997. Nutritional composition of rotifers following a change in diet from yeast and emulsified oil to microalgae. Aquaculture International, 5(5), 427-438.
Liu, Y., Lai, Q., Du, J., & Shao, Z. 2017. Genetic diversity and population structure of the Bacillus cereus group bacteria from diverse marine environments. Scientific reports, 7(1), 1-11.
Loka, J., Sonali, S. M., Saha, P., Devaraj, K., & Philipose, K. K. 2016. Use of commercial probiotics for the improvement of water quality and rotifer density in outdoor mass culture tanks. Indian Journal of Fisheries, 63(4), 145-149.
Loo, P. L., Chong, V. C., Vikineswary, S., and Ibrahim, S. 2016. Waste?grown phototrophic bacterium supports culture of the rotifer, B rachionus rotundiformis. Aquaculture research, 47(10), 3029-3041.
Lubzens, E. 1987. Raising rotifers for use in aquaculture. In Rotifer Symposium IV (pp. 245-255). Springer, Dordrecht.
Marcial, H. S., Hagiwara, A., and Snell, T. W. 2005. Effect of some pesticides on reproduction of rotifer Brachionus plicatilis Müller. In Rotifera X (pp. 569-575). Springer, Dordrecht.
Md, S. A., Nour, A. M., Srour, T. M., Assem, S. S., Ibrahim, H. A., & El-Sayed, H. S. 2015. Greenwater, Marine Bacillus subtilis HS1 probiotic and synbiotic enriched artemia and rotifers improved European seabass Dicentrarchus labrax larvae early weaning length growth, survival, water and bacteriology quality. American Journal of Life Sciences, 3(6-1), 45-52.
Miller, R. A., Beno, S. M., Kent, D. J., Carroll, L. M., Martin, N. H., Boor, K. J., & Kovac, J. 2016. Bacillus wiedmannii sp. nov., a psychrotolerant and cytotoxic Bacillus cereus group species isolated from dairy foods and dairy environments. International journal of systematic and evolutionary microbiology, 66(11), 4744.
Muller-Feuga, A. 2000. The role of microalgae in aquaculture: situation and trends. Journal of applied phycology, 12(3-5), 527-534.
Murillo, I. and Villamil, L. 2011. Bacillus cereus and Bacillus subtilis used as probiotics in rotifer (Brachionus plicatilis) cultures. J. Aquac. Res. Develop., S1:007.
Musharrafieh, R., Tacchi, L., Trujeque, J., LaPatra, S., & Salinas, I. 2014. Staphylococcus warneri, a resident skin commensal of rainbow trout (Oncorhynchus mykiss) with pathobiont characteristics. Veterinary microbiology, 169(1-2), 80-88.
Nevejan, N., De Schryver, P., Wille, M., Dierckens, K., Baruah, K., and Van Stappen, G. 2018. Bacteria as food in aquaculture: do they make a difference?. Reviews in Aquaculture, 10(1), 180-212.
Nicolas, J. L., Robic, E., and Ansquer, D. 1989. Bacterial flora associated with a trophic chain consisting of microalgae, rotifers and turbot larvae: influence of bacteria on larval survival. Aquaculture, 83(3-4), 237-248.
Ogello, E. O., Wullur, S., Yoshitaka, S., & Hagiwara, A. 2020. Dietary Value of Waste-Fed Rotifer Brachionus rotundiformis on the Larval Rearing of Japanese Whiting Sillago japonica. E3S Web of Conferences.
Ogello, E. O., Wullur, S., & Hagiwara, A. 2019. Blending fishwastes and chicken manure extract as low-cost and stable diet for mass culture of freshwater zooplankton, optimized for aquaculture. In IOP Conference Series: Materials Science and Engineering (Vol. 567, No. 1, p. 012022). IOP Publishing.
Ogello, E. O., Wullur, S., Sakakura, Y., & Hagiwara, A. 2018. Composting fishwastes as low-cost and stable diet for culturing Brachionus rotundiformis Tschugunoff (Rotifera): Influence on water quality and microbiota. Aquaculture, 486, 232-239.
Planas, M., Vázquez, J. A., Marqués, J., Pérez-Lomba, R., González, M., and Murado, M. 2004. Enhancement of rotifer (Brachionus plicatilis) growth by using terrestrial lactic acid bacteria. Aquaculture, 240(1-4), 313-329.
Rainuzzo, J. R., Olsen, Y., and Rosenlund, G. 1989. The effect of enrichment diets on the fatty acid composition of the rotifer Brachionus plicatilis. Aquaculture, 79(1-4), 157-161.
Reitan, K. I., and Olsen, Y. 1994. Comparison of rotifer culture quality with yeast plus oil and algal-based cultivation diets. Aquaculture International, 2(4), 225-238.
Reitan, K. I., Rainuzzo, J. R., Øie, G., and Olsen, Y. 1997. A review of the nutritional effects of algae in marine fish larvae. Aquaculture, 155(1-4), 207-221.
Ringoe, Einar & Birkbeck, Thomas. 1999. Intestinal microflora of fish larvae and fry. Aquaculture Research. 30. 73-93. 10.1046/j.1365-2109.1999.00302.x.
Sawabe T Kita-Tsukamoto K Thompson FL 2007 Inferring the evolutionary history of vibrios by means of multilocus sequence analysis. J Bacteriol189: 7932–7936.
Sousa, A. M., Pereira, M. O., & Lourenço, A. 2015. MorphoCol: An ontology-based knowledgebase for the characterisation of clinically significant bacterial colony morphologies. Journal of biomedical informatics, 55, 55-63.
Sugita, H., Asakura, C., Mano, N., & Morita, T. 2003. Microflora in the rearing water of Japanese flounder (Paralichthys olivaceus) at the larval stage. Aquaculture Science, 51(2), 235-236.
Snell, T. W., Kubanek, J., Carter, W., Payne, A. B., Kim, J., Hicks, M. K., and Stelzer, C. P. 2006. A protein signal triggers sexual reproduction in Brachionus plicatilis (Rotifera). Marine Biology, 149(4), 763-773.
Sultani, M., Ghosh, K., Hoseinifar, S. H., Kumar, V., Lymbery, A. J., Roy, S., & Ringø, E. 2019. Genus Bacillus, promising probiotics in aquaculture: aquatic animal origin, bio-active components, bioremediation and efficacy in fish and shellfish. Reviews in Fisheries Science & Aquaculture, 27(3), 331-379.
Thomson, R., Macpherson, H. L., Riaza, A., and Birkbeck, T. H. 2005. Vibrio splendidus biotype 1 as a cause of mortalities in hatchery?reared larval turbot, Scophthalmus maximus (L.). Journal of applied microbiology, 99(2), 243-250.
Vargas-Albores, F., Porchas-Cornejo, M. A., MartinezPorshas, M., Villalpando, E., Gollas-Galvan, T., and Martinez-Cordova, L. R. 2017. Bacterial biota of shrimp intes- tine is significantly modified by the use of a probiotic mixture: a high throughput sequencing approach. Helgoland Mar. Res. 71: 5
Verdonck, L., Swings, J., Kersters, K., Dehasque, M., Sorgeloos, P. and Leger, P. 1994. Variability of the microbial environment of rotifer Brachionis plicatilis and Artemia production systems. J World Aquacult Soc 25, 55–59.
Verschuere, L., Rombaut, G., Sorgeloos, P., and Verstraete, W. 2000. Probiotic bacteria as biological control agents in aquaculture. Microbiol. Mol. Biol. Rev., 64(4), 655-671.
Watanabe, T., Kitajima, C., and Fujita, S. 1983. Nutritional values of live organisms used in Japan for mass propagation of fish: a review. Aquaculture, 34(1-2), 115-143.
Wullur S. 2017. Rotifer dalam perspektif marikultur. LPPM Press, Indonesia (in Indonesia)
Wullur, S., Ginting, E. L., Waraow, V., Rumengan, I. F. M., Ogello, E. O., & Hagiwara, A. 2019. Growth response of rotifers on a bacterial-based diet made from fishwastes. In IOP Conference Series: Materials Science and Engineering (Vol. 567, No. 1, p. 012030). IOP Publishing.
Wullur, S., Sakakura, Y., anf Hagiwara, A. 2009. The minute monogonont rotifer Proales similis de Beauchamp: Culture and feeding to small mouth marine fish larvae. Aquaculture, 293(1-2), 62-67.
Wullur, S., Sakakura, Y., and Hagiwara, A. 2011. Application of the minute monogonont rotifer Proales similis de Beauchamp in larval rearing of seven-band grouper Epinephelus septemfasciatus. Aquaculture, 315(3-4), 355-360.
Wullur, S., Yoshimatsu, T., Tanaka, H., Ohtani, M., Sakakura, Y., Kim, H. J., and Hagiwara, A. 2013. Ingestion by Japanese eel Anguilla japonica larvae on various minute zooplanktons. Aquaculture Science, 61(4), 341-347.
Wullur, S., Kumagai, S., Sakakura, Y., and Hagiwara, A. 2018. Assessment of different minute zooplankton in the larval rearing of rusty angelfish centropyge ferrugata. AACL Bioflux, 11(5), 1495-1501.
Xue, M., Wen, C., Liang, H., Ding, M., Wu, Y., & Li, X. 2016. In vivo evaluation of the effects of commercial Bacillus probiotics on survival and development of Litopenaeus vannamei larvae during the early hatchery period. Aquaculture research, 47(5), 1661-1669.
Yoon, J. H., Kang, S. S., Lee, K. C., Kho, Y. H., Choi, S. H., Kang, K. H., & Park, Y. H. 2001. Bacillus jeotgali sp. nov., isolated from jeotgal, Korean traditional fermented seafood. International Journal of Systematic and Evolutionary Microbiology, 51(3), 1087-1092.
Yoshimura, K., Hagiwara, A., Yoshimatsu, T., and Kitajima, C. 1996. Culture technology of marine rotifers and the implications for intensive culture of marine fish in Japan. Marine and Freshwater Research, 47(2), 217-222.
Yoshimura K., K. Tanaka., Y. Takao., A. 2003. Novel culture system for the ultra-high-density production of the rotifer, Brachionus rotundiformis – a preliminary report. Aquaculture 227, 165-172
Yufera, M., Pascual, E., and Olivares, J. M. 2005. Factors affecting swimming speed in the rotifer Brachionus plicatilis. In Rotifera X (pp. 375-380). Springer, Dordrecht.
Yufera, M. 2007. Swimming behaviour of Brachionus plicatilis in relation to food concentration and feeding rates. Hydrobiologia, 593(1), 13-18. 2006. Domination and composition structure change at hemic peat natural regeneration following burning; a case study in Pelalawan, Riau Province. Biodiversitas 7: 154-158.

Most read articles by the same author(s)