Anatomical features and SCoT profiles provide new insight into phenotypic plasticity in the halophyte Suaeda maritima in Thailand

##plugins.themes.bootstrap3.article.main##

KANOKPHORN RITTIRONGSAKUL
ANITTHAN SRINUAL
ONGKARN VANIJAJIVA

Abstract

Abstract. Rittirongsakul K, Srinual A, Vanijajiva O. 2020. Anatomical features and SCoT profiles provide new insight into phenotypic plasticity in the halophyte Suaeda maritima in Thailand. Biodiversitas 21: 1082-1090. Phenotypic plasticity is the variation in phenotypic traits of organisms to survive with fluctuating environments. Halophytes are plants that can naturally tolerate high concentrations of salt in the soil, and their tolerance to salt stress, which reflects the ability of the plants to produce different phenotypic traits in response to changing environmental conditions. Suaeda maritima (L.) Dumort is a polymorphic halophyte and prominent species complex from tropical to temperate regions due to diverse stressful saline habitats. Consequently, the identification of S. maritima based on morphological data is challenging due to high phenotypic plasticity. In Thailand, S. maritima, known as Seablite or Cha Khram, has only been reported for the genus Suaeda which frequently found in coastal salt marshes. The peculiarities of the prevalence of three distinctive color traits, green, green-reddish and reddish, were commonly observed in Thailand. This preliminary study aims to examine the morpho-anatomical characters and molecular analysis of S. maritima and to determine how their morphological and genetic characterizations are related to phenotypic traits, particularly in color variation within the population at Bang Khun Tien shoreline in Bangkok, Thailand. This combined investigation of anatomical characters and start codon targeted (SCoT) fingerprinting profiles provide first evidence of phenotypic variations and genetic characterizations of halophytic S. maritima in Thailand. Anatomical characters of leaf structures confirmed that the species is austrobassioid (C3) types. Meanwhile, molecular investigation of thirty SCoT primers found that only two SCoT primers (SCoT10 and SCoT27) failed to amplify the S. maritima genomic DNA. Thoroughly, twenty-eight SCoT primers produced 162 unambiguous and reproducible banding profiles with 140-1200 bp product size. Despite, there was no genetic variation detectable within the population, SCoT technique was considered a suitable tool to produces adequate characterization for DNA fingerprinting of halophyte S. maritima. However, further studies involving additional samples of S. maritima are needed to obtain a more general view of the conspicuous variation and colonization history in Thailand.

##plugins.themes.bootstrap3.article.details##

References
Agarwal A, Gupta V, Haq SU, Jatav PK, Kothari SL. Kachhwaha S. 2019. Assessment of genetic diversity in 29 rose germplasms using SCoT marker. JKSUES 31(4): 780-788. DOI: 10.1016/j.jksus.2018.04.022
Amom T, Nongdam P. 2017. The use of molecular marker methods in plants: a review. IJCRR 9(17): 1-7. DOI: 10.7324/IJCRR.2017.9171
Aluri JSR, Kumar R, Chappidi PR. 2016. Reproductive Biology of Mangrove Plants Clerodendrum inerme, Derris trifoliata, Suaeda maritima, Suaeda monoica, Suaeda nudiflora. TRSER18(3): 31-68. DOI: 10.1515/trser-2015-0092
Alghamdi A. 2012. Phenotypic plasticity and population differentiation in Suaeda maritima on a salt marsh [Dissertation]. University of East Anglia.
Arnold PA, Kruuk LE, Nicotra AB, 2019. How to analyse plant phenotypic plasticity in response to a changing climate. New Phytol 222(3): 1235-1241. DOI: 10.1111/nph.15656
Brandt R, Lomonosova M, Weising K, Wagner N, Freitag H, 2015. Phylogeny and biogeography of Suaeda subg. Brezia (Chenopodiaceae/Amaranthaceae) in the Americas. Plant Syst Evol, 301(10): 2351-2375. DOI: 10.1007/s00606-015-1233-y
Carolin RC, Jacobs S, WL, Vesk M. 1975 Leaf structure in Chenopodiaceae. Bot Jahrb Syst 95: 226–255.
Chapman VJ. 1947. Suaeda maritima (L.) Dum. J Ecol 35: 293-302.
Collard BC, Mackill DJ. 2009. Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Pl Mol Biol Rep: 27(1): 86. DOI: 10.1007/s11105-008-0060-5
Di Carlo E, Chen CR, Haynes RJ, Phillips IR, Courtney R. 2019. Soil quality and vegetation performance indicators for sustainable rehabilitation of bauxite residue disposal areas: a review. Soil Res 57(5): 419-446. DOI: 10.1071/SR18348
Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19: 11-15.
Doyle JJ, Doyle JL. 1990. Isolation of plant DNA from fresh tissue. Focus 12:13–15
Ekphisutsuntorn P, Wongwises P, Chinnarasri C, Humphries U, Vongvisessomjai S. 2010. Numerical modeling of erosion for muddy coast at Bangkhuntien shoreline, Thailand. IJCEE 2(4): 230-240.
Feder NED, O'brien TP. 1968. Plant microtechnique: some principles and new methods. Amer J Bot 55(1): 123-142.
Fisher DD, Schenk HJ, Thorsch JA, Ferren Jr WR. 1997. Leaf anatomy and subgeneric affiliations of C3 and C4 species of Suaeda (Chenopodiaceae) in North America. Am J Bot 84(9): 1198-1210.
Flowers TJ, Colmer TD. 2008. Salinity tolerance in halophytes. New Phytol 179: 945-963.
Frankham R, Ballou JD, Ralls K, Eldridge M, Dudash MR, Fenster CB, Lacy RC, Sunnucks P. 2019. A Practical Guide for Genetic Management of Fragmented Animal and Plant Populations. Oxford University Press, UK.
Gratani L. 2014. Plant phenotypic plasticity in response to environmental factors. Adv Bot: 2014. DOI: 10.1155/2014/208747
Guo DL, Zhang JY, Liu CH. 2012. Genetic diversity in some grape varieties revealed by SCoT analyses. Mol Biol Rep 39(5): 5307-5313. DOI: 10.1007/s11033-011-1329-6
Gurudeeban S, Ramanathan T, Satyavani K, Dhinesh T. 2011. Standardization of DNA isolation and PCR protocol for RAPD analysis of Suaeda sp. Asian J Biotech 3(5): 486-492.
Hamrick JL, Godt MJW. 1996. Effects of life history traits on genetic diversity. PHILOS T R SOC B 351: 1291–1298.
Hiatt D, Flory SL. 2020. Populations of a widespread invader and co?occurring native species vary in phenotypic plasticity. New Phytol 225(1): 584-594. DOI: 10.1111/nph.16225
Hoffmann A, Griffin P, Dillon S, Catullo R, Rane R, Byrne M, Jordan R, Oakeshott J, Weeks A, Joseph L, Lockhart P. 2015. A framework for incorporating evolutionary genomics into biodiversity conservation and management. Clim Change Resp 2(1): 1. DOI: 10.1186/s40665-014-0009-x
Ihm BS, Myung HH, Park DS, Lee JY, Lee JS. 2004. Morphological and genetic variations in Suaeda maritima based on habitat. J Plant Biol 47(3): 221-229. DOI: 10.1007/BF03030512
Lomonosova M, Brandt R, Freitag H. 2008. Suaeda corniculata (Chenopodiaceae) and related new taxa from Eurasia. Willdenowia 38: 81-110. DOI: 10.3372/wi.38.38105
Lomonosova M, Nikonova D, Kutsev M, Dorogina O, Korolyuk AY. 2017. Genetic differentiation in the polyploid complex of Suaeda corniculata (CA Mey.) Bunge in Eastern Siberia. Russ J of Genet 53: 596-605. DOI: 10.1134/S1022795417050052
Jacobs SWL. 2001. Review of leaf anatomy and ultrastructure in the Chenopodiaceae (Caryophyllales). J Torrey Bot Soc J: 236-253.
Johansen DA. 1940. Plant microtechnique. McGraw-Hill Book Company Inc, London.
Kadereit G, Borsch T, Weising K, Freitag H. 2003. Phylogeny of Amaranthaceae and Chenopodiaceae and the evolution of C4 photosynthesis. IJPS 164(6): 959-986. DOI: 10.1086/378649
Kim SK, Chung SO. 2018. Phylogenetic study of the Genus Suaeda (Chenopodiaceae) based on chloroplast and nuclear DNA sequences from Korea. KJEE 32(6): 566-574. DOI: 10.13047/KJEE.2018.32.6.566
Milligan BG, Leebens-Mack J, Strand AE. 1994. Conservation genetics: beyond the maintenance of marker diversity. Mol Ecol 3:423–435.
Munir U, Perveen A, Qamarunnisa S. 2015. The utility of rbcL and matK regions for DNA barcoding analysis of the genus Suaeda (Amaranthaceae) species. Pak J Bot 47(6): 2329-2334.
Nybom H, Bartish IV. 2000. Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspect Plant Ecol 3: 93–114.
Parsons KJ, McWhinnie K, Pilakouta N, Walker L. 2020. Does phenotypic plasticity initiate developmental bias?. Evol Dev 22(1-2): 56-70. DOI: 10.1111/ede.12304
Poli? D, Lukovi? J, Zori? L, Boža P, Merkulov L, Kneževi? A. 2009. Morpho-anatomical differentiation of Suaeda maritima (L.) Dumort. 1827.(Chenopodiaceae) populations from inland and maritime saline area. CEJB 4(1): 117-129.
Pornpitakdamrong A, Sudjaroen Y. 2014. Seablite (Suaeda maritima) Product for Cooking, Samut Songkram Province, Thailand. Food Nutr Sci 5: 850-856. DOI: 10.4236/fns.2014.59094
Prinz K, Hensen I, Schie S, Debener T, Weising K. 2009a. Microsatellite markers for the tetraploid halophyte Suaeda maritima (L.) Dumort.(Chenopodiaceae) and cross?species amplification in related taxa. Mol Ecol Res 9: 1247-1249. DOI: 10.1111/j.1755-0998.2009.02620x
Prinz K, Weising K, Hensen I. 2009b. Genetic structure of coastal and inland populations of the annual halophyte Suaeda maritima (L.) dumort. in Central Europe, inferred from amplified fragment length polymorphism markers. Plant Biol 11: 812-820. DOI: 10.1111/j.1438-8677.2008.00178x
Prinz K, Weising K, Hensen I. 2013. Habitat fragmentation and recent bottlenecks influence genetic diversity and differentiation of the Central European halophyte Suaeda maritima (Chenopodiaceae). Am J Bot 100: 2210-2218. DOI: 10.3732/ajb.1300097
Raju AS, Kumar R, 2016. On the reproductive ecology of Suaeda maritima, S. monoica and S. nudiflora (Chenopodiaceae). JoTT 8(6): 8860-8876. DOI: 10.11609/jott.2275.8.6.8860-8876
Ruzin SE. 1999. Plant microtechnique and microscopy (Vol. 198). Oxford University Press, New York.
Schenk HJ, Ferren Jr, WR. 2001. On the sectional nomenclature of Suaeda (Chenopodiaceae). Taxon 50(3): 857-873. DOI: 10.2307/1223715
Schlichting CD. 1986. The evolution of phenotypic plasticity in plants. Annu Rev Ecol Evol Syst 17(1): 667-693.
Schütze P, Freitag H, Weising K. 2003. An integrated molecular and morphological study of the subfamily Suaedoideae Ulbr.(Chenopodiaceae). Plant Syst Evol 239: 257-286.
Stearns SC. 1989. The evolutionary significance of phenotypic plasticity. Bioscience 39(7): 436-445.
Sultan SE. 1995. Phenotypic plasticity and plant adaptation. Acta Bot Neerl 44(4): 363-383.
Vanijajiva O. 2020. Start codon targeted (SCoT) polymorphism reveals genetic diversity of Manilkara in Thailand. Biodiversitas 21(2): 666-673. DOI: 10.13057/biodiv/d210232
Venkatesalu V, Chellappan KP. 1988. Photosynthetic studies in succulent halophytes. Geobios 15: 49–52.
Voronin PY, Shuyskaya EV, Toderich KN, Rajabov TF, Ronzhina DA, Ivanova LA. 2019. Distribution of ?4 Plants of the Chenopodiaceae Family According to the Salinization Profile of the Kyzylkum Desert. Russ J Plant Physiol 66(3): 375-383. DOI: 10.1134/S1021443719030166
Waisel Y. 1972. Biology of halophytes. Academic Press: New York
Wetson AM, Cassaniti C, Flowers TJ. 2008. Do conditions during dormancy influence germination of Suaeda maritima? Ann Bot 101: 1319-1327. DOI:10.1093/aob/mcn04
Wetson AM, Zörb C, John EA, Flowers TJ. 2012. High phenotypic plasticity of Suaeda maritima observed under hypoxic conditions in relation to its physiological basis. Ann Bot 109(5): 1027-1036. DOI:10.1093/aob/mcs01
Welkie GW, Caldwell M. 1970. Leaf anatomy of species in some dicotyledon families as related to the C3 and C4 pathways of carbon fixation. Canadian J Bot 48(12): 2135-2146.
Weising K, Freitag H. 2007. Phylogeography of halophytes from European coastal and inland habitats. Zool Anz 246: 279–292.
Yeo AR, Flowers TJ. 1980. Salt tolerance in the halophyte, Suaeda maritima L. Dum.: evaluation of the effect of salinity upon growth. J Exp Bio 31: 1171–1183.