Characteristics of sago pith and sago bark waste from Seram Island, Maluku, Indonesia




Abstract. Siruru H, Syafii W, Wistara I. N. J, Pari G. 2019. Characteristics of Metroxylon rumphii (pith and bark waste) from Seram Island, Maluku, Indonesia. Biodiversitas 20: 3517-3526. Sago (Metroxylon rumphii Martius) pith waste (SPW) and sago bark waste (SBW) are lignocellulosic materials that can be used for various needs directly or indirectly. It is necessary to understand SPW and SBW characteristics to maximize their utilization. In this study, we analyzed the proximate, ultimate, and crystallinity by XRD, the functional groups by FTIR, morphology by SEM, and the derivate analysis of hot water-soluble extractives by GCMS. The contents of SPW and SBW hot-water soluble extractive, lignin, and holocellulose were 57.7 and 4.9%, 6.1 and 29.4%, and 45.74 and 66.74%, respectively. The volatile matter, ash content, silica, fixed carbon, C, H, and O contents of the SPW and SBW were 81.48 and 84.56%, 1.30 and 3.04%, 1.25% and 2.03, 12.77 and 18.06%, 37.93 and 44.64%, 6.37 and 6.49%, and 47.75 and 51.10%, respectively. The degree of crystallinity of SPW was 15.04%, while that of SBW was 47.28%, where both have a monoclinic structure with the main peak by 2? 16° and 26°. SPW and SBW contained several minerals such as silica, boron, sulfur, and phosphorus. The surface morphology of the SPW was porous with a small diameter and thin cell wall, while that of SBW was covered by minerals. Nitrogen, alcohol, and sugar group compounds were found more in SPW, whereas phenol compound was more in SBW. SBW has high lignin content and SPW has a very large amount of hot water-soluble extractive.


Agrawa UP, Zhu JY, Ralph SA. 2014. Enzymatic hydrolysis of biomass: Effects of crystallinity, particle size, and lignin removal. Proceedings of the 16th ISWFPC.
Artyszak A. 2018. Effect of Silicon Fertilization on Crop Yield Quantity and Quality-A Literature Review in Europe. Plants. 7 (54): 1-17 Doi:10 3390/plants7030054.
Awa K, Shinzawa H, Ozaki Y. 2014. An effect of cellulose crystallinity on the moisture absorbability of a pharmaceutical tablet studied by near-infrared spectroscopy. Appl Spectrosc. 68:625–632.
Awg-Adeni DSK, Bujang B, Hassan MA, Abd-Aziz S. 2013. Recovery of Glucose from Residual Starch of Sago Hampas for Bioethanol Production. BioMed Research International. 2013: 1-8.
Bintoro HMH, Purwanto YJ, Amarillis S. 2010. Sago on Peat Land. IPB Press, Bogor. (in Indonesian)
Brito JO, Silva FG, Leão MM, Almeida G. 2008. Chemical composition changes in eucalyptus and pinus woods submitted to heat treatment. Bioresour Technol. 99 : 8545–8548. DOI : 10.1016/j.biortech.2008.03.069.
Cao X, Zhong L, Peng X, Sun S, Li S, Liu S, Sun R. 2013. Comparative study of the pyrolysis of lignocellulose and its major components: Characterization and overall distribution of their biochars and volatiles. Bioresour Technol. 155: 21-27. DOI : 10.1016/j.biortech.2013.12.006
Carrier M, Loppinet-Serani A, Denux D, Lasnier JM, Ham-Pichavant F, Cansell F, Aymonier C. 2011. Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass Bioener. 35 (1): 298 - 307. DOI : 10.1016/j.biombioe.2010.08.067
Danish M, Naqvi M, Farooq U, Naqvi S. 2015. Characterization of South Asian agricultural residues for potential utilization in future energy mix. The 7th International Conference on Applied Energy – ICAE2015. Energy Procedia 75: 2974 – 2980. DOI: 10.1016/j.egypro.2015.07.604.
Demirbas A. 2007. Effects of Moisture and Hydrogen Content on the Heating Value of Fuels. Energ Source. 29 : 649–655. DOI: 10.1080/009083190957801
Ehara H, Toyoda Y, Johnson DV. 2018. Sago Palm. Multiple Contributions to Food Security and Sustainable Livelihoods. ISBN 978-981-10-5268-2. Springer. Singapore.
Fan M., Dai D, Huang B. 2012. Fourier Transform Infrared Spectroscopy for Natural Fibres. Fourier Transform - Materials Analysis. Handbook. InTech. ISBN: 978-953-51-0594-7.
Fava F, de Barros M, Stumpp E, Marceli JF. 2006. Aqueous extract to repel or exterminate termites. Patent Application WO BR173 20050824.2005.
Fengel D, Wegner G. 1995. Wood. Chemistry, Ultrastructure, Reactions. Gadjah Mada University Press.
Gaojin L, Wu S. 2012. Analytical pyrolysis studies of corn stalk and its three main components by TG-MS and Py-GC/MS. J anal appl pyrol. 97: 11–18. DOI : 10.1016/j.jaap.2012.04.010.
Grabner M, Müller U, Gierlinger N, Wimmer R. 2005. Effects of heartwood extractives on mechanical properties of larch. IAWA Journal. 26(2): 211-220. DOI : 10.1163/22941932-90000113
Karim AA, Tie A, Manan DMA, Zaidul ISM. 2008. Starch from the sago (Metroxylon sagu) palm tree—properties, prospects, and challenges as a new industrial source for food and other uses. Compr Rev Food Sci Food. 7(3): 215-228. DOI: 10.1111/j.1541-4337.2008.00042.x
Kontturi E, Suchy M, Penttilä P, Jean B, Pirkkalainen K, Torkkeli M, Serimaa R. 2011. Amorphous characteristics of an ultrathin cellulose film. Biomacromolecules 12(3): 770–777.
Kumoro AC, Ngoh GC, Hasan M, Ong CH, Teoh EC. 2008. Conversion of Fibrous Sago (Metroxylon sagu) Waste into Fermentable Sugar via Acid and Enzymatic Hydrolysis. Asian J Sci Res. 1(4): 412-420.
Kuroda K, Ozawa T, Ueno T. 2001. Characterization of Sago Palm Metroxylon sagu Lignin by Analytical Pyrolysis. J Agric Food Chem. 49(4): 1840-1847.
Lai JC, Rahmana WA, Toh WAWA, Toh WY. 2013. Characterisation of sago pith waste and its composites. Ind Crop Prod. 45: 319 – 326. DOI :10.1016/j.indcrop.2012.12.046.
Linggang S, Phang LY, Wasoh MH, Abd-Aziz S. 2012. Sago pith residue as an alternative cheap substrate for fermentable sugars production. Appl Biochem Biotechnol.167 (1): 122 –131.
Mahajan GR, Pandey RN, Datta SC, Kumar D, Sahoo RN, Parsad R. 2004. Fertilizer Nitrogen, Phosphorus and Sulphur Prescription for Aromatic Hybrid Rice (Oryza sativa L.) using Targeted Yield Approach. Proc. Natl. Acad. Sci., 84(3): 537 – 547. DOI : 10.1007/s40011-013-0268-5.
McClatchey W, Manner IH, Elevitch RC. 2006. Metroxylon Spp. Ecology papers Inc. London.
Mohd AMD, Islam MN, Noor BM. 2001. Enzymic extraction of native starch from sago (Metroxylon sagu) waste residue. Starch – Stärke. 53: 639–643. DOI: 10.1002/1521-379X%28200112%2953%3A12<639%3A%3AAID-STAR639>3.0.CO%3B2-2.
M?ller BR. 2010. Effect of particle size and surface area on the adsorption of albumin-bonded bilirubin on activated carbon. Carbon 48 (12): 3607– 3615.
Nascimento MS, Santana ALBD, Maranhão CA, Oliveira LS, Bieber L. 2013. Phenolic Extractives and Natural Resistance of Wood. Chapter 13. DOI: 10.5772/56358
Olcese RN, Fontana S, Lardier G, Carr V, Bettahar M, Aubriet F, Ghanbaja J, Petitjean D, Dufour A. 2013. Aromatic chemicals by iron-catalyzed hydro treatment of lignin pyrolysis vapor. Chem 6(8):1490 – 1499. DOI: 10.1002/cssc.201300191.
Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK. 2010. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol. for Biofuels 3(1) : 1 - 10. DOI : 10.1186/1754-6834-3-10.
Park SY, Kim JC, Kim JH, Yang SY, Kwon O, Yeo H, Cho KC, Choi IG. 2017. Possibility of wood classification in korean softwood species using near-infrared spectroscopy based on their chemical compositions. J Korean Wood Sci Technol. 45(2): 202 - 212. DOI : 10.5658/WOOD.2017.45.2.202
Pei-Lang AT, Mohamed AMD, Karim AA. 2006. Sago starch and composition of associated components in palms of different growth stages. Carbohyde Polym. 63 (2) : 283–286. DOI : 10.1016/j.carbpol.2005.08.061.
Phang SM, Miah MS, Yeoh BG, Hashim MA. 2000. Spirulina cultivation in digested sago starch factory wastewater. Journal of Applied Phycology 12 (3-5): 395 - 400. DOI : 10.1023/A:1008157731731.
Poletto M, Heitor L, Júnior O, Zattera AJ. 2014. Native cellulose: structure, characterization, and thermal properties. Materials. 7(9): 6105-6119. DOI : 10.3390/ma7096105.
Rezende CA, de Lima MA, Maziero P, de Azevedo ER, Garcia W, Polikarpov I. 2011. Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnol Biofuel. 4:54. DOI: 10.1186/1754-6834-4-54.
Sapawe N, Osman NS, Zakaria MZ, Shahab SA, Fikry SM, Aris MAM. 2018. Synthesis of green silica from agricultural waste by sol-gel method. Materialstoday: Proceedings 5 (10:2): 21861-21866. DOI : 10.1016/j.matpr.2018.07.043.
Sharma RK, Wooten JB, Vicki L, Baliga VL, Lin X, Chan WG, Hajaligol MR. 2004. Characterization of chars from pyrolysis of lignin. Fuel 83 : 1469–1482. DOI : 10.1016/j.fuel.2003.11.015.
Shmulsky R, Jones PD, Lilley K. 2011. Forest Products and Wood Science An Introduction Sixth Edition A John Wiley & Sons, Inc., Publication. Oxford. UK.
Sirmah P, Dumarçay S, Gérardin P. 2009. Unusual amount of (-)-mesqui- to of from the heartwood of Prosopis juli?ora. Nat Prod Res. 23 (2): 183-189. DOI : 10.1080/14786410801940968.
Sjostrom E.1998. Wood Chemistry. Fundamentals and Applications. Gadjah Mada University Press. Edisi 2.
Sommer F, Kern F, Gadow R. 2015. Medium Density Fiberboard Machining and Wear Behavior of Injection-Molded Ceramic Composite Wood Cutting Tools. Int J Appl Ceram Technol. 12 (1)147–156. DOI:10.1111/ijac.12144.
Stuart B. 2004. Infrared Spectroscopy: Fundamentals and Applications. John Wiley & Sons, Ltd ISBN: 0-470-85427-8 (HB); 0-470-85428-6 (PB).
Sugino H, Sugimoto H, Miki T, Kanayama K. 2007. Fine structure changes of wood during moisture adsorption and desorption process analyzed by x-ray diffraction measurement. Mokuzai Gakkaishi 53 (2):82–89. DOI : 10.2488/jwrs.53.82.
Sunarti TC, Dwiko M, Derosya V, Meryandini A. 2012. Effect of Microwave Treatment on Acid and Enzymes Susceptibilities of Sago Pith. Procedia Chem. 4 : 301 – 307. DOI : 10.1016/j.proche.2012.06.042.
Toki T, Koyanagi T, Yoshida K, Yamamoto K, Morita M. 1994. Hydrazine compounds usesful as pesticides" (US patent). Ishihara Sangyo Kaisha Ltd (original assignee). US5304657A.
Tripathi D, Dwivedi MM, Tripathi DK, Chauhan DK. 2017. Silicon bioavailability in exocarp of Cucumis sativus Linn. 3 Biotech, 7(6): 386. DOI 10.1007/s13205-017-0960-x.
Utami AS. 2018. Studies on the utilization of sago residue Ph.D. Thesis. Mie University. Japan.
Wada M, Hori R, Kim UJ, Saski S. 2010. X-diffraction study on the thermal expansion behavior of cellulose Ib and its high–temperature phase. Polym Degrad stabil. 95 (8):1330-1334. DOI : 10.1016/j.polymdegradstab.2010.01.034.
Wahi R, Abdullah LC, Mobarekeh MN, Ngaini Z, Yaw TCS. 2017. Utilization of esterified sago bark fibre waste for removal of oil from palm oil mill effluent. J Environ Chem Eng. 5 : 170–177. DOI : 10.1016/j.jece.2016.11.038.
Wistara NJ, Rohmatullah MA, Febrianto F, Pari G, Lee SH, Kim NH. 2017. Effect of bark content and densification temperature on the properties of oil palm trunk-based pellets. Journal of the Korean Wood Science and Technology 45 (6): 671-681. DOI : 10.5658/WOOD.2017.45.6.671.
WU Y, Zhao Z, Li H, He F. 2009. Low-temperature pyrolysis characteristics of major components of biomass. J Fuel Chem Technol. 37(4): 427 – 432. DOI: 10.1016/S1872-5813(10)60002-3.
Yacob N, Yusof MR, Ainun ZMA, Badri KH. 2018. Effect of cellulose fiber from sago waste on properties of starch-based films. IOP Conf. Series: IOP Conf. Series: Materials Science and Engineering 368: 012028. DOI:10.1088/1757-899X/368/1/012028.
Yang H, Yan R, Chen H, Lee DH, Zheng C. 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86 (2-3): 1781–1788. DOI :10.1016/j.fuel.2006.12.013
Zaimah F, Prihastanti E. 2012. Test of the use of sago waste on the growth of strawberryplants (Fragaria vesca L) in the village of Platan, Jepara Regency. Anatomy and Physiology Bulletins. 20 (1) : 18 -28. (Indonesian).