Evaluation of a newly isolated thermophilic microalga Chlorella sorokiniana UNM-IND1 as biodiesel feedstocks

##plugins.themes.bootstrap3.article.main##

NUR ZAKIYAH RAMADANI
INDRAYANI
ELMI NURHAIDAH ZAINUDDIN

Abstract

Abstract. Ramadani NZ, Indrayani, Zainuddin EN. 2024. Evaluation of a newly isolated thermophilic microalga Chlorella sorokiniana UNM-IND1 as biodiesel feedstocks. Biodiversitas 25: 3339-3349. Microalgae contain lipids and fatty acids that can be used as an alternative energy for biodiesel. Efforts to increase lipid productivity in microalgae can be done by conditioning the microalgae under certain stress conditions. Temperature is one of the environmental factors that can stimulate lipid production in microalgae. This study aims to analyze the effect of different temperatures on the growth, biomass, lipid productivity and fatty acid composition of a newly isolated microalgae Chlorella sorokiniana Shihira & Krauss, 1965 UNM-IND1 and to evaluate the potential of the microalga as biodiesel feedstocks. The C. sorokiniana UNM-IND1 was initially cultured at three different temperature conditions namely culture room temperature (25-26°C), ambient room temperature (28-32°C) and drying room temperature (32-48°C) (phase I). In phase II, the cultures were transferred to lower temperature conditions and incubated for 3 days. The parameters measured were cell density, specific growth rate, biomass productivity, lipid content, lipid productivity and fatty acid composition. The results showed that all cultures can grow at all culture conditions tested. The highest specific growth rate and biomass productivity were achieved at drying room temperature treatment at 0.790 d-1 and 0,166 g.L-1.d-1, respectively. The highest lipid productivity (0.0674 g.L-1.d-1) was obtained at culture room temperature. After the temperature shift, the lipid yield, lipid content and lipid productivity of all cultures increased. Fatty acid analysis showed that the alga consists of mainly palmitic acid, linolenic acid and linoleic acid. Based on the growth, biomass, lipid and fatty acid composition, the C. sorokiniana UNM-IND1 has potential as a biodiesel feedstock.

##plugins.themes.bootstrap3.article.details##

References
Amaro, H. M., Guedes, A. C., Malcata, F. X., Barbosa, M. J., & Pereira, A. P. (2021). Biodiesel production by microalgal biotechnology. In Microalgae-Based Biofuels and Bioproducts (pp. 153-190). Elsevier.
Balasubramanian, S., Allen, J. D., Kanitkar, A., & Boldor, D. (2011). Algae-derived biofuel: current status and future perspectives. Renewable and Sustainable Energy Reviews, 15(1), 303-312.
Baqi, F., Putri, R. S. I., & Mirzayanti, Y. W. (2022). Proses Pembuatan Biodiesel Dari Mikroalga Nannochloropsis sp. Menggunakan Metode Transesterifikasi In-Situ dengan Katalis KOH. Equilibrium Journal of Chemical Engineering, 6(2), 92. https://doi.org/10.20961/equilibrium.v6i2.63257
Chaisutyakorn, P., Praiboon, J. & Kaewsuralikhit, C. (2018). The effect of temperature on growth and lipid and fatty acid composition on marine microalgae used for biodiesel production. J Appl Phycol 30, 37–45 (2018). https://doi.org/10.1007/s10811-017-1186-3
Chen, C., Lv, D., Luo, M., Zhang, Y., & Hu, H. (2021). Influence of temperature and nitrogen on the growth and lipid production of Nannochloropsis oceanica. Journal of Applied Phycology, 33(1), 433-441.
Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294-306.
Chokshi, K., & Pancha, I. (2021). Algal biodiesel production and optimization: recent advancements and futuristic approaches. In Advances in Bioenergy, Volume 1 (pp. 143-163). Springer.
Chou, H. H., Su, H. Y., Song, X. Di, Chow, T. J., Chen, C. Y., Chang, J. S., & Lee, T. M. (2019a). Isolation and characterization of Chlorella sp. mutants with enhanced thermo- And CO2 tolerances for CO2 sequestration and utilization of flue gases. Biotechnology for Biofuels, 12(1). https://doi.org/10.1186/s13068-019-1590-9
Converti, A., Casazza, A. A., Ortiz, E. Y., Perego, P., & Del Borghi, M. (2020). Effect of temperature on biomass, lipid productivity and photosynthetic parameters of Chlamydomonas reinhardtii. Bioresource Technology, 313, 123646.
Converti, A., Casazza, A., A., Ortiz, E., Y., Perego, P., Borghi, M., D. (2009). Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing: Process Intensification 48 (6):1146-1151. https://doi.org/10.1016/j.cep.2009.03.006
Demirbas, A. dan Demirbas, M. F., 2010, Algae Energy : Algae as A New Source of Biodisel, Springer-Verlag London Limitide: London, hlm 3-12.
Duong, V. T., Li, Y., Nowak, E., & Schenk, P. M. (2012). Microalgae isolation and selection for prospective biodiesel production. Energies, 5(6), 1835–1849. https://doi.org/10.3390/en5061835
Fan, J., Zhang, G., Zhang, L., Jiang, X., & Hu, Q. (2021). Effect of temperature and nitrogen supply on the growth and lipid accumulation of Nannochloropsis gaditana. Algal Research, 55, 102306.
Fathurohman, M., Yuliana, A., Aldiany, E., Tri, A., Program, K. P., Farmasi, S., Tinggi, S., Kesehatan Bakti, I., & Husada, T. (2021). UJI IDENTIFIKASI ASAM LEMAK TIDAK JENUH DARI MIKROALGA Thraustochytrids MENGGUNAKAN METODE EKSTRAKSI TRANSETERIFIKASI IN SITU. In Uji Identifikasi Asam … Journal of Pharmacopolium (Vol. 4, Issue 1).
Fuad Hossain, M., Ratnayake, R. R., Mahbub, S., Kumara, K. L. W., & Magana-Arachchi, D. N. (2020a). Identification and culturing of cyanobacteria isolated from freshwater bodies of Sri Lanka for biodiesel production. Saudi Journal of Biological Sciences, 27(6), 1514–1520. https://doi.org/10.1016/j.sjbs.2020.03.024
Gikonyo, B., 2014, Advance in Biofuel Production: Algae and Aquatic Plants, Apple Academic Press, Inc.: Kanada, hlm.1-3, 5-8.
Grubiši?, M., Šantek, B., Zori?, Z., ?oši?, Z., Vrana, I., Gašparovi?, B., ?ož-Rakovac, R., & Šantek, M. I. (2022). Bioprospecting of Microalgae Isolated from the Adriatic Sea: Characterization of Biomass, Pigment, Lipid and Fatty Acid Composition, and Antioxidant and Antimicrobial Activity. Molecules, 27(4). https://doi.org/10.3390/molecules27041248
Gultom, S. O. (2018a). Mikroalga: Sumber Energi Terbarukan Masa Depan. Jurnal Kelautan: Indonesian Journal of Marine Science and Technology, 11(1), 95. https://doi.org/10.21107/jk.v11i1.3802
Harun, R., Singh, M., Forde, G. M., & Danquah, M. K. (2010). Bioprocess engineering of microalgae to produce a variety of consumer products. Renewable and Sustainable Energy Reviews, 14(3), 1037-1047.
Hidajatiningtyas, H., & Pascasarjana, S. (2011). Identifikasi Dan Optimasi Media Tumbuh Isolat Mikroalga Asal Sumber Air Panas Cipanas Jawa Barat Yang Berpotensi Sebagai Bahan Baku Biodiesel.
Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639
Indrayani, & Haslianti, A. (2018). Isolation and screening of marine microalgae from Kendari waters, Southeast Sulawesi, Indonesia suitable for outdoor mass cultivation in hypersaline media (Vol. 11). http://www.bioflux.com.ro/aacl
Indrayani, Haslianti, Asmariani, Wellem H., M uis B. 2020. Growth, Biomass and Lipid Productivity of a Newly Isolated Tropical Marine Diatom, Skeletonema sp. UHO29, Under Different Light Intensities. Biodiversitas 21(4): 1498-1503.
Indrayani, I., Putra, R., P., Hambali, A., Ardiansyah. (2022). Isolation and characterization of extremophile bacteria for hydrolytic enzyme production from Waepella Hot Spring, Sinjai, Indonesia. Biodiversitas 23 (12): 6345-6351 DOI: 10.13057/biodiv/d231231
Indrayani I., Ramadani N. Z., Mawaddah N., Kaseng E. S., Sukainah A., Putra R. P., Hambali A., Fadilah R., Nurmila, Ardiansyah. (2023). Influence of different culture media and light intensity on the growth and biomass productivity of a newly isolated Chlorella sp. UNM-IND1 from Waepella hot spring, South Sulawesi, Indonesia. AACL Bioflux 16(3):1508-1518.
Insan, A. I., Christiani, C., Hidayah, H. A., & Widyartini, D. S. (2018). The Lipid Content of The Culture Microalgae Using Media of Tapioca Liquid Waste. Biosaintifika: Journal of Biology & Biology Education, 10(2), 440–448. https://doi.org/10.15294/biosaintifika.v10i2.12381
Jumiarni, D., & Anggraini, N. (2021). Characterization of microalgae from lowlands in South Sumatera (Indonesia) as a potential source for biodiesel production. Journal of Physics: Conference Series, 1731(1). https://doi.org/10.1088/1742-6596/1731/1/012002.
Juntila DJ, Bautista MA, Monotilla W. 2015. Biomass and lipid production of a local isolate Chlorella sorokiniana under mixotrophic growth conditions. Bioresour Technol 191: 395–398. https://doi.org/10.1016/j.biortech.2015.03.098
Khalaji, M. (2022). eval__uation of fatty acid profiles of Chlorella Vulgaris microalgae grown in dairy wastewater for producing biofuel. J Environ Health Sci Eng. 20 (2): 691–697. doi: 10.1007/s40201-022-00808-z.
Khorramdashti, M. S., Giri, M., S., Majidian, N. (2021). Extraction lipids from chlorella vulgaris by supercritical CO2 for biodiesel production. South African Journal of Chemical Engineering 38: 121-131. https://doi.org/10.1016/j.sajce.2021.03.008
Khoo, K. S., Ahmad, I., Chew, K. W., Iwamoto, K., Bhatnagar, A., & Show, P. L. (2023). Enhanced microalgal lipid production for biofuel using different strategies including genetic modification of microalgae: A review. In Progress in Energy and Combustion Science (Vol. 96). Elsevier Ltd. https://doi.org/10.1016/j.pecs.2023.101071
Knothe G (2013) Production and properties of biodiesel from algal oils. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 207–221.
Lane, T. W. (2021). Barriers to microalgal mass cultivation. https://www.elsevier.com/open-access/userlicense/1.0/
Li T, Zheng Y, Yu L, Chen S. 2014. Mixotrophic cultivation of a Chlorella sorokiniana strain for enhanced biomass and lipid production. Biomass Bioenergy 66: 204–213. https://doi.org/10.1016/j.biombioe.2014.04.010
Li, Y., Zeng, X., Huang, L., Chen, Z., & Chen, W. (2020). The effect of temperature and nutrients on the growth and lipid accumulation of Botryococcus braunii. Bioresource Technology Reports, 9, 100391.
Lo, C., Wijffels, R. H., & Eppink, M. H. M. (2023). Lipid extraction from fresh Nannochloropsis oceanica using semi-hydrophobic eutectic solvents. Algal Research, 72. https://doi.org/10.1016/j.algal.2023.103117
Makareviciene, V., & Sendzikiene, E. (2022). Application of Microalgae Biomass for Biodiesel Fuel Production. In Energies (Vol. 15, Issue 11). MDPI. https://doi.org/10.3390/en15114178
Maltsev, Y., Maltseva, K., Kulikovskiy, M., & Maltseva, S. (2021). Influence of light conditions on microalgae growth and content of lipids, carotenoids, and fatty acid composition. In Biology (Vol. 10, Issue 10). MDPI. https://doi.org/10.3390/biology10101060
Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable and Sustainable Energy Reviews, 14(1), 217-232.
Mancini, A., Imeprlini, E., Nigro, E., Montagnese, C., Daniele, A., Orru, S., Buono, P. (2015). Biological and Nutritional Properties of Palm Oil and Palmitic Acid: Effects on Health. Molecules 2015, 20, 17339-17361; doi:10.3390/molecules200917339
Moheimani N., R., Borowitzka M., A., Isdepsky A., Fon Sing S., 2013 Standard methods for measuring growth of algae and their composition. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 265-284
Park, S., Nguyen, T. H. T., & Jin, E. S. (2019). Improving lipid production by strain development in microalgae: Strategies, challenges and perspectives. In Bioresource Technology (Vol. 292). Elsevier Ltd. https://doi.org/10.1016/j.biortech.2019.121953
Praharyawan, S., Riset, P., Iph, B., Riset, B., Nasional, I., & Raya Bogor, J. (n.d.). BIOTEKNOLOGI & BIOSAINS INDONESIA PENINGKATAN PRODUKSI BIOMASSA SEBAGAI STRATEGI JITU DALAM MEMPERCEPAT PRODUKSI BIODIESEL BERBASIS MIKROALGA DI INDONESIA Enhancing Microalgae Biomass Production as an Excellent Strategy to Accelerate Microalgae-Based Biodiesel Production in Indonesia (Vol. 8). http://ejurnal.bppt.go.id/index._php/JBBI
Pruvost, J., Goetz, V., Artu, A., & Al Jabri, H. (2018a). THERMAL MODELLING AND OPTIMIZITION OF MICROALGAL BIOMASS PRODUCTION IN THE HARSH DESERT CONDITIONS OF STATE OF QATAR.
Rafaelina, M., Rustam, Y., & Amini, S. (n.d.). PERTUMBUHAN DAN AKTIVITAS ANTIOKSIDAN DARI MIKROALGA Porphyridium cruentum dan Chlorella sp. BIOMA, 12(1), 2016. https://doi.org/10.21009/Bioma
Rajapaksha, B. M. M., Maithreepala, R. A., & Asanthi, H. B. (2014a). Water quality and biology of hot springs waters of Mahapelessa, Sri Lanka. Scientific Research Journal (SCIRJ), II. www.scirj.org
Ramdanawati, L. (2018). ANALISIS KOMPOSISI ASAM LEMAK DARI MIKROALGA LAUT Navicula salinicola. Al-Kimia, 6(2). https://doi.org/10.24252/al-kimia.v6i2.6196
Ratnawati, R., & Wicaksono, P. (2022). Microalgae as a Sustainable Source for Biodiesel Production. In Biofuels: Production, Applications and Recent Developments (pp. 41-67). Elsevier.
Razzak, S. A., Lucky, R. A., Hossain, M. M., & deLasa, H. (2022). Valorization of Microalgae Biomass to Biofuel Production: A review. Energy Nexus, 7, 100139. https://doi.org/10.1016/j.nexus.2022.100139
Safi, C., Zebib, B., Merah, O., Pontalier, P., Y., Vaca-Garcia, C. (2014). Morphology, composition, production, processing and applications of Chlorella vulgaris: a review. Renewable Sustain Energy Rev., 35, pp. 265-278.
Ullah, K., Ahmad, M., Sharma, V., K., Harvey, L., A., Zafar, M., Anyanwu C., N. (2014). Algal biomass as a global source of transport fuels: overview and development perspectives. Progress Nat. Sci. Mater. Int., 24 (2014), pp. 329-339
Xu, K., Zou, W., Peng, B., Guo, C., & Zou, X. (2023). Lipid Droplets from Plants and Microalgae: Characteristics, Extractions, and Applications. In Biology (Vol. 12, Issue 4). MDPI. https://doi.org/10.3390/biology12040594
Yeh, K. L., & Chang, J. S. (2012). Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Bioresource Technology, 105, 120–127. https://doi.org/10.1016/j.biortech.2011.11.103
Yamamoto, M., Kurihara, I., Kawano, S. (2005). Late type of daughter cell wall synthesis in one of the Chlorellaceae, Parachlorella kessleri (Chlorophyta, Trebouxiophyceae). Planta, 221 (2005), pp. 766-775
Yeong Hwang, T., Mee Kin, C., & Ling Shing, W. (2021). Potential of Microalgae for Biofuel and Food Production (Vol. 2022, Issue 10). https://intijournal.intimal.edu.my
Yilmaz Cankilic, M., & Arik Berk, G. (2016a). Analysis of cyanobacterial diversity of some hot springs in Afyonkarahisar, Turkey. Applied Ecology and Environmental Research, 14(2), 463–484. https://doi.org/10.15666/aeer/1402_463484.
Zheng, H., Yin, J., Gao, Z., Huang,H., Ji, X., Dou, C. (2011). Disruption of Chlorella vulgaris cells for the release of biodiesel-producing lipids: a comparison of grinding, ultrasonication, bead milling, enzymatic lysis, and microwaves. Appl. Biochem. Biotechnol., 164, pp. 1215-1224.