Characterization of Trichoderma sp. local isolate and antagonism assay against pathogen Helminthosporium sp.

##plugins.themes.bootstrap3.article.main##

PARLUHUTAN SIAHAAN
AGUSTINA MONALISA TANGAPO
STELLA DEIBY UMBOH

Abstract

Abstract. Siahaan P, Tangpao AM, Umboh SD. 2024. Characterization of Trichoderma sp. local isolate and antagonism assay against pathogen Helminthosporium sp. Biodiversitas 25: 3380-3389. Trichoderma, as a biological agent, plays an important role in controlling pathogens that cause plant diseases, so it needs to be utilized properly, especially for local isolates. This research aimed to analyze the morphological, molecular and secondary metabolic characteristics of local isolates of Trichoderma fungus and test their antagonism against the pathogenic fungus Helminthosporium sp. The results showed that Tomohon local isolate of Trichoderma was identified as T. asperellum. The results of GC-MS analysis show that T. asperellum produces secondary metabolites in the form of volatile compounds from the group of volatile aldehydes, esters and ketones, as well as four fatty acid compounds, namely n-hexadecanoic acid, hexadecanoic acid, methyl ester, octadecadienoic acid, methyl ester, 9,12-octadecadienoic acid (Z,Z), play an important role in the antagonistic ability of Trichoderma. T. asperellum was able to inhibit Helminthosporium sp. by 70% on the seventh day of observation, and had antagonistic mechanisms, namely antibiosis and competition. Based on these results, local isolates of T. asperellum have great potential for use as biological control agents.

##plugins.themes.bootstrap3.article.details##

References
Abdullah NS, Doni F, Mispan MS, Saiman MZ, Yusuf YM, Oke MA, Suhaimi NSM. 2021. Harnessing Trichoderma in agriculture for productivity and sustainability. Agronomy 11 (12): 2559. DOI: 10.3390/agronomy11122559.
Alshuniaber MA, Krishnamoorthy R, AlQhtan WH. 2020. Antimicrobial activity of polyphenolic compounds from Spirulina against food-borne bacterial pathogens. Saudi J Biol Sci 28 (1): 459-464. DOI: 10.1016/j.sjbs.2020.10.029.
Alwadai AS, Perveen K, Alwahaibi M. 2022. The isolation and characterization of antagonist Trichoderma spp. from the soil of Abha, Saudi Arabia. Molecules 27: 2525. DOI: 10.3390/molecules27082525.
Amaechi NC. 2021. Evaluation of bioactive compounds in Moringa oleifera flower using gas chromatography mass spectrometry/fourier transform infrared spectroscopy: The need for good postharvest handling. Acta Sci Nutr Health 5 (12): 112-122.
Antil S, Abraham JS, Sripoorna S, Maurya S, Dagar J, Makhija S, Bhagat P, Gupta R, Sood U, Lal R, Toteja R. 2023. DNA barcoding, an effective tool for species identification: A review. Mol Biol Rep 50: 761-775. DOI: 10.1007/s11033-022-08015-7.
Asghar W, Craven KD, Kataoka R et al. 2024. The application of Trichoderma spp., an old but new useful fungus, in sustainable soil health intensification: A comprehensive strategy for addressing challenges. Plant Stress 12: 100455. DOI: 10.1016/j.stress.2024.100455.
Asis A, Shahriar SA, Naher L et al. 2021. Identification patterns of Trichoderma strains using morphological characteristics, phylogenetic analyses and lignocellulolytic activities. Mol Biol Rep 48 (4): 3285-3301. DOI: 10.1007/s11033-021-06321-0.
Bhardwaj NR, Kumar J. 2017. Characterization of volatile secondary metabolites from Trichoderma asperellum. J Appl Nat Sci 9 (2): 954-959. DOI: 10.31018/jans.v9i2.1303.
Boonupara T, Udomkun P, Khan E, Kajitvichyanukul P. 2023. Airborne pesticides from agricultural practices: A critical review of pathways, influencing factors, and human health implications. Toxics 11 (10): 858. DOI: 10.3390/toxics11100858.
Brito VN, Alves JL, Araújo KS, de Souza Leite T, de Queiroz CB, Pereira OL, de Queiroz MV. 2023. Endophytic Trichoderma species from rubber trees native to the Brazilian Amazon, including four new species. Front Microbiol 14: 1095199. DOI: 10.3389/fmicb.2023.1095199.
Cai F, Druzhinina IS. 2021. In honor of John Bissett: Authoritative guidelines on molecular identification of Trichoderma. Fungal Divers 107: 1-69. DOI: 10.1007/s13225-020-00464-4.
de Sousa TP, Chaibub AA, Cortes MVdB, Batista TFC, de Andrade Bezerra G, da Silva GB, de Filippi MMC. 2021. Molecular identification of Trichoderma sp. isolates and biochemical characterization of antagonistic interaction against rice blast. Arch Microbiol 203: 3257-3268. DOI: 10.1007/s00203-021-02307-5.
Dou K, Lu Z, Wu Q, Ni M, Yu C, Wang M, Li Y, Wang X, Xie H, Chen J, Zhang C. 2020. MIST: A multilocus identification system for Trichoderma. Appl Environ Microbiol 86: e01532-20. DOI: 10.1128/AEM.01532-20.
El-Nasr AA, Elaasser MM, Elsaba YM, Mokhtar FY. 2023. Antioxidant, antimicrobial, and anticancer cells line of Aspergillus flavus ON764430 extracts isolated from Al Mudawara Mountain, El Fayum governorate. Adv Basic Appl Sci 1 (1): 33-45. DOI: 10.21608/abas.2023.194936.1005.
Ferreira FV, Musumeci MA. 2021. Trichoderma as biological control agent: Scope and prospects to improve efficacy. World J Microbiol Biotechnol 37 (5): 90. DOI: 10.1007/s11274-021-03058-7.
Gautam AK, Verma RK, Avasthi S, Sushma, Bohra Y, Devadtha B, Niranjan M, Suwannarach N. 2022. Current insight into traditional and modern methods in fungal diversity estimates. J Fungi 8 (3): 226. DOI: 10.3390/jof8030226.
Gullino ML, Albajes R, Al-Jboory I, Angelotti F, Chakraborty S, Garrett KA, Hurley BP, Juroszek P, Lopian R, Khaled Makkouk K, Xubin Pan X, Pugliese M Tannecia Stephenson T. 2022. Climate change and pathways used by pests as challenges to plant health in agriculture and forestry. Sustainability 14: 12421. DOI: 10.3390/su141912421.
Hu YF, Liu JW, Xu ZH, Castañeda-Ruíz RF, Zhang K, Ma J. 2023. Morphology and multigene phylogeny revealed three new species of Helminthosporium (Massarinaceae, Pleosporales) from China. J Fungi 9 (2): 280. DOI: 10.3390/jof9020280.
Inglis PW, Mello SCM, Martins I et al. 2020. Trichoderma from Brazilian garlic and onion crop soils and description of two new species: Trichoderma azevedoi and Trichoderma peberdyi. PLoS One 15 (3): e0228485. DOI: 10.1371/journal.pone.0228485.
Iswati R, Aini LQ, Soemarno, Abadi AL. 2024. Exploration and characterization of indigenous Trichoderma spp. as antagonist of Rhizoctonia solani and plant growth promoter of maize. Biodiversitas 25 (4): 1375-1385. DOI: 10.13057/biodiv/d250405.
Jangir M, Pathak R, Sharma S. 2017. Trichoderma and its potential applications. In: Singh DP, Singh HB, Prabha R (eds). Plant-Microbe Interactions in Agro-Ecological Perspectives. Springer, Singapore. DOI: 10.1007/978-981-10-6593-4_13.
Kumar V, Koul B, Taak P, Yadav D, Song M. 2023. Journey of Trichoderma from pilot scale to mass production: A review. Agriculture 13 (10): 2022. DOI: 10.3390/agriculture13102022.
Lahlali R, Ezrari S, Radouane N, Kenfaoui J, Esmaeel Q, Hamss HE, Belabess Z, Barka EA. 2022. Biological control of plant pathogens: A global perspective. Microorganisms 10 (3): 596. DOI: 10.3390/microorganisms10030596.
Lakhdari W, Benyahia I, Bouhenna MM, Bendif H, Khelafi H, Bachir H, Ladjal A, Hammi H, Mouhoubi D, Khelil H, Alomar TS, AlMasoud N, Boufafa N, Boufahja F, Dehliz A. 2023. Exploration and evaluation of secondary metabolites from Trichoderma harzianum: GC-MS analysis, phytochemical profiling, antifungal and antioxidant activity assessment. Molecules 28 (13): 5025. DOI: 10.3390/molecules28135025.
López-Valenzuela B, Tzintzun-Camacho O, Armenta-Bojórquez A, Valenzuela-Escoboza F, Lizárraga-Sánchez G, Ruelas-Islas J, González-Mendoza D. 2022. Microorganisms of genus Trichoderma as phytohormone promoters and pathogen suppressors. Bioagro 34 (2): 163-172. DOI: 10.51372/bioagro342.6.
Mahadevakumar S, Sridhar KR. 2021. Diversity of pathogenic fungi in agricultural crops. In: Dubry SK, Verma SK (eds). Rhizosphere Biology. Springer, Singapore. DOI: 10.1007/978-981-16-3364-5_6.
Manjur SM, Afiya H. 2019. Introductory chapter: Identification and isolation of Trichoderma spp. - their significance in agriculture, human health, industrial and environmental application. In: Shah MM, Sharif U, Buhari TR (eds). Trichoderma - The Most Widely Used Fungicide. IntechOpen, London. DOI: 10.5772/intechopen.83528.
Mayo-Prieto S, Campelo MP, Lorenzana A et al. 2020. Antifungal activity and bean growth promotion of Trichoderma strains isolated from seed vs soil. Eur J Plant Pathol 158: 817-828. DOI: 10.1007/s10658-020-02069-8.
Mukherjee PK, Mendoza-Mendoza A, Zeilinger S, Horwitz BA. 2022. Mycoparasitism as a mechanism of Trichoderma-mediated suppression of plant diseases. Fungal Biol Rev 39: 15-33. DOI: 10.1016/j.fbr.2021.11.004.
Priyashantha AKH, Karunarathna SC, Lu L, Tibpromma S. 2023. Fungal endophytes: An alternative biocontrol agent against phytopathogenic fungi. Encyclopedia 3: 759-780. DOI: 10.3390/encyclopedia3020055.
Putri ND, Sulistyowati L, Aini LQ, Muhibuddin A, Trianti I. 2022. Screening of endophytic fungi as potential antagonistic agents of Pyricularia oryzae and evaluation of their ability in producing hydrolytic enzymes. Biodiversitas 23: 1048-1057. DOI: 10.13057/biodiv/d230248.
Ramona Y, Darmayasa IBG, Line MA. 2022. Biological control of Sclerotinia minor attack on pyrethrum plants by Trichoderma harzianum in glasshouse experiment. Biodiversitas 23: 3264-3269. 10.13057/biodiv/d230655.
Senanayake I. 2020. Morphological approaches in studying fungi: Collection, examination, isolation, sporulation, and preservation. Mycosphere 11 (1): 2678-2754. DOI: 10.5943/mycosphere/11/1/20.
Shabana YM, Ghoneem KM, Rashad YM et al. 2022. Distribution and biodiversity of seed-borne pathogenic and toxigenic fungi of maize in Egypt and their correlations with weather variables. Plants 11 (18): 2347. DOI: 10.3390/plants11182347.
Shah J, Ramzan U, Naseer S, Khalid MN, Amjad I, Majeed T, Sabir W, Shaheen MK, Ali B, Shamim F, Nazeer S. 2023. Chemical control of southern leaf blight of maize caused by Helminthosporium maydis. Biol Clin Sci Res J (1): 225-225. DOI: 10.54112/bcsrj.v2023i1.225.
Simamora M, Basyuni M, Lisnawita. 2021. Potency of secondary metabolites of Trichoderma asperellum and Pseudomonas fluorescens in the growth of cocoa plants affected by vascular streak dieback. Biodiversitas 22: 2542-2547. DOI: 10.13057/biodiv/d220511.
Skidmore AM, Dickinson CH. 1976. Colony interactions and hyphal interference between Septoria nodorumand phylloplane fungi. Trans Br Mycol Soc 66 (1): 57-64. DOI: 10.1016/S0007-1536(76)80092-7.
?lusarczyk J, Adamska E, Czerwik-Marcinkowska J. 2021. Fungi and algae as sources of medicinal and other biologically active compounds: A review. Nutrients 13 (9): 3178. DOI: 10.3390/nu13093178.
Srinivasa N, Sriram S, Singh C, Shivashankar KS. 2017. Secondary metabolites approach to study the bio-efficacy of Trichoderma asperellum isolates in India. Intl J Curr Microbiol App Sci 6 (5): 1105-1123. DOI: 10.20546/ijcmas.2017.605.120.
Tudi M, Daniel RH, Wang L, Lyu J, Sadler R, Connell D. 2021. Agriculture development, pesticide application and its impact on the environment. Intl J Environ Res Public Health 18 (3): 1112. DOI: 10.3390%2Fijerph18031112.
Ty?kiewicz R, Nowak A, Ozimek E, Jaroszuk-?cise? J. 2023. Trichoderma: The current status of its application in agriculture for the biocontrol of fungal phytopathogens and stimulation of plant growth. Intl J Mol Sci 23 (4): 2329. DOI: 10.3390/ijms23042329.
Woo SL, Hermosa R, Lorito M, Monte E. 2023 Trichoderma: A multipurpose, plant-beneficial microorganism for eco-sustainable agriculture. Nat Rev Microbiol 21: 312-326. DOI: 10.1038/s41579-022-00819-5.
Yadav GK, Yadav RS, Singh G, Khilari K, Mishra P, Singh H. 2020. Evaluate the inhibitory ability of fungicides and biocontrol agents against Pyricularia oryzae and Helminthosporium oryzae in vitro. Intl J Curr Microbiol App Sci 9 (8): 3569-3575. DOI: 10.20546/ijcmas.2020.908.411.
Yadav D, Adhikari A, Dhuingana B, Gurung H, Khatri N, Pandit S. 2022. In-vitro efficacy of Trichoderma isolates on Sclerotium rolfsii causing collar rot of chili. Asian J Agric 6 (2): 97-102. DOI: 10.13057/asianjagric/g060206.
Yu ZF, Qiao M, Zhang Y, Zhang KQ. 2007. Two new species of Trichoderma from Yunnan, China. Antonie van Leeuwenhoek 92 (1): 101-108. DOI: 10.1007/s10482-006-9140-4.
Yuef MH, Ariel TJ, Raúl R, Alberto LJ, Benigno E, Eduardo O. 2018. Identification and evaluation of secondary metabolites by gas chromatography-mass spectrometry (GC-MS) in native strains of Trichoderma species. Afr J Biotechnol 17 (37): 1162-1171. DOI: 10.5897/AJB2018.16546.

Most read articles by the same author(s)