Spatial modeling of the use probability for Pig-nosed turtles (Carettochelys insculpta) in South Papua, Indonesia

##plugins.themes.bootstrap3.article.main##

PURNAMA GRAHA
https://orcid.org/0009-0002-0482-363X
MIRZA D. KUSRINI
https://orcid.org/0000-0003-1111-2406
SYARTINILIA
https://orcid.org/0000-0002-2657-8690
RICHARD GATOT NUGROHO TRIANTORO

Abstract

Abstract. Graha P, Kusrini MD, Wijaya S, Triantoro RGN. 2024. Spatial modeling of the use probability for Pig-nosed turtles (Carettochelys insculpta) in South Papua, Indonesia. Biodiversitas 25: 3246-3253. The uncontrolled use of natural resources can threaten species' survival and negatively impact ecosystems, potentially affecting the economy and its service to humans. One species that requires attention is the pig-nosed turtle (Carettochelys insculpta Ramsay, 1886), the sole surviving member of the Carettochelyidae family and is only found in rivers of southern New Guinea and the northern regions of Australia. Pig-nosed turtles have been harvested intensively in Papua for their eggs and are considered vulnerable based on the International Union for Conservation of Nature red list assessment. Developing a spatial distribution model to determine the probability of use of C. insculpta priority areas is crucial to safeguard the essential areas necessary for its life cycle. This research utilized the Ecological Niche Modeling at The Metaland EcologyLab to assess use probability and identify potential conservation risks. Results of the probability of use model analysis in South Papua Province revealed that the region with the highest use probability of C. insculpta is Boven Digoel District, accounting for a significant land area of 496,019.61 hectares. In comparison, moderate use was noted in Asmat District, encompassing 921,830.76 hectares, whereas low use was recorded in the same regency, covering 695,466.10 hectares. The use probability was influenced by multiple factors, with the most significant contributions stemming from the occurrence of water (41%), distance from the settlement (21%), distance from road (14%), land cover (13%), river density (6%), and slope (5%).

##plugins.themes.bootstrap3.article.details##

References
Agresti A. 2015. Foundations of Linear and Generalized Linear Models. John Wiley & Sons, Inc., New Jersey.
Andersen SK, Staerk J, Kalhor E, Natusch DJD, da Silva R, Pfau B, Conde DA. 2021. Economics, life history and international trade data for seven turtle species in Indonesian and Malaysian farms. Data Brief 34: 106708. DOI: 10.1016/j.dib.2020.106708.
Ara A, Maia M, Louzada F, Macêdo S. 2021. Random machines: A bagged-weighted support vector model with free kernel choice. J Data Sci 19 (3): 409-428. DOI: 10.6339/21-JDS1014.
Araújo MB, Anderson RP, Márcia Barbosa AM, Beale CM, Dormann CF, Early R, Garcia RA, Guisan A, Maiorano L, Naimi B, O’Hara RB, Zimmermann NE, Rahbek C. 2019. Standards for distribution models in biodiversity assessments. Sci Adv 5 (1): eaat4858. DOI: 10.1126/sciadv.aat4858.
Bennett EL, Robinson JG. 2000. Hunting of Wildlife in Tropical Forests: Implications for Biodiversity and Forest Peoples. Environment Department Paper, Biodiversity Series-Impact Studies. The World Bank Institute, Washington, USA.
Bramorska B, Komar E, Maugeri L, Ruczy?ski I, ?mihorski M. 2024. Socio-economic variables improve accuracy and change spatial predictions in species distribution models. Sci Total Environ 924: 171588. DOI: 10.1016/j.scitotenv.2024.171588.
Burgess EA, Lilley R. 2014. Assessing the Trade in Pig-Nosed Turtles Carettochelys insculpta in Papua, Indonesia. Traffic, Petaling Jaya, Malaysia.
Burkov A. 2019. The Hundred-Page Macine Learning Book. https://books.google.co.id/books?id=ZF3KwQEACAAJ.
Ceballos G, Ehrlich PR, Dirzo R. 2017. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc Natl Acad Sci 114 (30): E6089-E6096. DOI: 10.1073/pnas.1704949114.
De Andrade AFA, Velazco SJE, De Marco Júnior P. 2020. ENMTML: An R package for a straightforward construction of complex ecological niche models. Environ Model Softw 125: 104615. DOI: 10.1016/j.envsoft.2019.104615.
De Marco P, Nóbrega CC. 2018. Evaluating collinearity effects on species distribution models: An approach based on virtual species simulation. PLOS ONE 13 (9): e0202403. DOI: 10.1371/journal.pone.0202403.
Eisemberg C, van Dijk PP, Georges AP, Amepou Y. 2018. Carettochelys insculpta. The IUCN Red List of Threatened Species. DOI: 10.2305/IUCN.UK.2018-2.RLTS.T3898A2884984.en.
Eisemberg CC, Amepou Y, Rose M, Yaru B, Georges A. 2015. Defining priority areas through social and biological data for the pig-nosed turtle (Carettochelys insculpta) conservation program in the Kikori region, Papua New Guinea. J Nat Conserv 28: 19-25. DOI: 10.1016/j.jnc.2015.08.003.
Eisemberg CC, Rose M, Yaru B, Georges A. 2011. Demonstrating decline of an iconic species under sustained indigenous harvest - the pig-nosed turtle (Carettochelys insculpta) in Papua New Guinea. Biol Conserv 144 (9): 2282-2288. DOI: 10.1016/j.biocon.2011.06.005.
Hennig C, Viroli C. 2016. Quantile-based classifiers. Biometrika 103 (2): 435-446. DOI: 10.1093/biomet/asw015.
Indonesian Government. 2018. Regulation of the Minister of Environment and Forestry No. P.106/MENLHK/SETJEN/KUM.1/12/2018. Concerning Management of Wild Plant and Animal Species. Minister of Environment and Forestry, Jakarta. [Indonesian]
Indonesian Government. 2021. Decree No. 65. MENLHK/KSDAE/KSA.2/3/2021 Concerning Determination of The Eggs of The Pig-nosed Turtle (Carettochelys insculpta) in Papua Province as A Game Animal. Minister of Environment and Forestry, Jakarta. [Indonesian]
Indonesian Government. 2022. Decree No. SK.2/KSDAE/KKH/KSA.2/1/2022. Concerning Quotas for the Collection of Natural Plants and the Capture of Wild Animals for the Period 2022. Minister of Environment and Forestry, Jakarta. [Indonesian]
IPBES. 2022. Thematic Assessment Report on the Sustainable Use of Wild Species of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES). DOI: 10.5281/zenodo.6448567.
Joyce WG. 2014. A review of the fossil record of turtles of the clade pan-Carettochelys. Bull Peabody Museum Nat Hist 55 (1): 3-33. DOI: 10.3374/014.055.0102.
Jung Y, Hu J. 2015. A K-fold averaging cross-validation procedure. J Nonparametr Stat 27 (2): 167-179. DOI: 10.1080/10485252.2015.1010532.
Kusrini MD, Triantoro RGN, Manurung R, Setiawan RA, Kim N. 2024. Local harvest of pig-nosed turtle (Carettochelys insculpta) in the Kao River. Boven Digoel District, South Papua, Indonesia. Biodiversitas 25 (2): 522-532. DOI: 10.13057/biodiv/d250211.
Leroy B, Delsol R, Hugueny B, Meynard CN, Barhoumi C, Barbet-Massin M, Bellard C. 2018. Without quality presence–absence data, discrimination metrics such as TSS can be misleading measures of model performance. J Biogeogr 45 (9): 1994-2002. DOI: 10.1111/jbi.13402.
Leroy B. 2023. Choosing presence-only species distribution models. J Biogeogr 50 (1): 247-250. DOI: 10.1111/jbi.14505.
Liu C, Li W, Xu J, Zhou H, Li C, Wang W. 2022. Global trends and characteristics of ecological security research in the early 21st century: A literature review and bibliometric analysis. Ecol Indic 137: 108734. DOI: 10.1016/j.ecolind.2022.108734.
Marsh SME, Hoffmann M, Burgess ND, Brooks TM, Challender DWS, Cremona PJ, Hilton-Taylor C, de Micheaux FL, Lichtenstein G, Roe D, Böhm M. 2022. Prevalence of sustainable and unsustainable use of wild species inferred from the IUCN Red List of threatened species. Conserv Biol 36 (2): e13844. DOI: 10.1111/cobi.13844.
Norberg A, Abrego N, Blanchet FG et al. 2019. A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. Ecol Monogr 89 (3): e01370. DOI: 10.1002/ecm.1370.
Pekel JF, Cottam A, Gorelick N, Belward AS. 2016. High-resolution mapping of global surface water and its long-term changes. Nature 540 (7633): 418-422. DOI: 10.1038/nature20584.
Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME. 2017. Opening the black box: an open-source release of maxent. Ecography 40 (7): 887-893. DOI: 10.1111/ecog.03049.
Ramsay EP. 1887. On a new genus and species of fresh water tortoise from the Fly River, new Guinea. Proceedings of the Linnaean Society of New South Wales.
Samedi IDT. 2000. Freshwater turtle and tortoise conservation and utilization in Indonesia. In: Paul P, van Djik SBL, Rhodin AGJ (eds). Asian Turtle Trade. Proceedings of a Workshop on Conservation and Trade of Freshwater Turtles and Tortoises in Asia. Phnom Penh, Cambodia, 1-4 December 1999. Cambodia.
Shepherd CR, Gomez L, Nijman V. 2020. Illegal wildlife trade, seizures and prosecutions: A 7.5-year analysis of trade in pig-nosed turtles Carettochelys insculpta in and from Indonesia. Glob Ecol Conserv 24: e01249. DOI: 10.1016/j.gecco.2020.e01249.
Simon SM, Glaum P, Valdovinos FS. 2023. Interpreting random forest analysis of ecological models to move from prediction to explanation. Sci Rep 13 (1): 3881. DOI: 10.1038/s41598-023-30313-8.
Siroski PA, Ciocan H, Hilevski S, Larriera A. 2024. Increasing population status of broad-snouted caiman (Caiman latirostris) based on sustainable use strategies in a managed protected area in Santa Fe, Argentina. Animals 14 (9): 1288. DOI: 10.3390/ani14091288.
Triantoro RGN, Kusrini MD, Prasetyo LB. 2017. Intensitas perburuan dan pola perdagangan kura-kura moncong babi di Sungai Vriendschap, Kabupaten Asmat. Prosiding Seminar Nasional Masyarakat Biodiversitas Indonesia 3 (3): 339-344. DOI: 10.13057/psnmbi/m030309. [Indonesian]
Triantoro RGN. 2012. Ekologi peneluran dan intensitas Pemanfaatan labi-labi Moncong Babi (Carettochelys insculpta Ramsay 1886) di sungai vriendschap Kabupaten. Asmat, Papua. [Dissertation]. IPB University, Bogor. [Indonesian]
van Proosdij ASJ, Sosef MSM, Wieringa JJ, Raes N. 2016. Minimum required number of specimen records to develop accurate species distribution models. Ecography 39 (6): 542-552. DOI: 10.1111/ecog.01509.
van Zinnicq Bergmann MPM, Guttridge TL, Smukall MJ, Adams VM, Bond ME, Burke PJ, Fuentes MMPB, Heinrich DDU, Huveneers C, Gruber SH, Papastamatiou YP. 2022. Using movement models and systematic conservation planning to inform marine protected area design for a multi-species predator community. Biol Conserv 266: 109469. DOI: 10.1016/j.biocon.2022.109469.
Velazco SJE, Villalobos F, Galvão F, De Marco Júnior P. 2019. A dark scenario for cerrado plant species: effects of future climate, land use and protected areas ineffectiveness. Divers Distrib 25 (4): 660-673. DOI: 10.1111/ddi.12886.
Vitt LJ, Caldwell JP. 2014. Herpetology. Elsevier, Amsterdam. DOI: 10.1016/b978-0-12-386919-7.00018-6.
Wikle CK. 2015. Modern perspectives on statistics for spatio-temporal data. WIREs Comput Stat 7 (1): 86-98. DOI: 10.1002/wics.1341.
Yan H, Feng L, Zhao Y, Feng L, Wu D, Zhu C. 2020. Prediction of the spatial distribution of Alternanthera philoxeroides in China based on Arcgis and Maxent. Glob Ecol Conserv 21: e00856. DOI: 10.1016/j.gecco.2019.e00856.
Yu H, Cooper AR, Infante DM. 2020. Improving species distribution model predictive accuracy using species abundance: Application with boosted regression trees. Ecol Model 432: 109202. DOI: 10.1016/j.ecolmodel.2020.109202.

Most read articles by the same author(s)