Satellite remote sensing techniques for mapping and estimating mangrove carbon stocks in the small island of Gili Meno, West Nusa Tenggara, Indonesia

##plugins.themes.bootstrap3.article.main##

I WAYAN GEDE ASTAWA KARANG
I WAYAN NUARSA
I GEDE HENDRAWAN
NI MADE NIA BUNGA SURYA DEWI
PUTU KUMARA YASA
I MADE DWITA KRISNANDA

Abstract

Abstract. Karang IWGA, Nuarsa IW, Hendrawan IG, Dewi NMNBS, Yasa PK, Krisnanda IMD. 2024. Satellite remote sensing techniques for mapping and estimating mangrove carbon stocks in the small island of Gili Meno, West Nusa Tenggara, Indonesia. Biodiversitas 25: 3189-3200. Estimating mangrove carbon stocks is crucial for effective conservation and management but presents challenging, particularly on small islands. Satellite remote sensing offers a powerful tool for assessing mangrove ecosystems, though its application in small island environments remains underutilized. This study aims to explore and evaluate the effectiveness of satellite remote sensing techniques, specifically using Sentinel-2, for mapping and estimating mangrove carbon stocks on the small island of Gili Meno, West Nusa Tenggara, Indonesia. The Random Forest technique was employed to distinguish between mangrove and non-mangrove areas by analyzing multiple parameters. Additionally, a semi-empirical method was used to evaluate and map the Above Ground Carbon (AGC) of mangroves, with general allometric equations applied to calculate AGC values. Six vegetation indices were assessed to develop a model for estimating mangrove AGC using linear regression equations. The accuracy of the model predictions was evaluated using the Root Mean Square Error. The study identified that the mangrove forest area in Gili Meno covers approximately 6.88 ha. Notably, the research revealed that the IRECI model, with an R² value of 0.76 and RMSE of 17.14 ton/ha, was the most effective for AGC estimation when utilizing red edge bands.

##plugins.themes.bootstrap3.article.details##

References
Akhiat Y, Manzali Y, Chahhou M, Zinedine A. 2021. A new noisy random forest based method for feature selection. Cybern Inf Technol 21 (2): 10-28. DOI: 10.2478/cait-2021-0016.
Alam M, Zafar S, Muhammad W. 2017. Assessment of Sentinel-2 vegetation indices for plot level tree AGB estimation. Intl Conf Aerosp Sci Eng 2017: 8374278. DOI: 10.1109/icase.2017.8374278.
As-syakur AR, Aryunisha PEP, Wijana IMS, Novanda IGA, Dewi IGAIP, Andiani AAE, Premananda MG, Sugiana IP. 2023. Comparison of mangrove canopy covering accuracy using Landsat 8 and Landsat 9 imagery based on several vegetation indices in West Bali National Park. E3S Web Conf 442: 03001. DOI: 10.1051/e3sconf/202344203001.
Aye WN, Tong X, Li J, Tun AW. 2023. Assessing the carbon storage potential of a young mangrove plantation in Myanmar. Forests 2023 14: 824. DOI: 10.3390/f14040824.
Baloloy AB, Blanco AC, Ana RRCS, Nadaoka K. 2020. Development and application of a new Mangrove Vegetation Index (MVI) for rapid and accurate mangrove mapping. ISPRS J Photogramm Remote Sens 166: 95-117. DOI: 10.1016/j.isprsjprs.2020.06.001.
Bindu G, Rajan P, Jishnu ES, Ajith Joseph K. 2020. Carbon stock assessment of mangroves using remote sensing and geographic information system. Egypt J Remote Sens Space Sci 23 (1): 1-9. DOI: 10.1016/j.ejrs.2018.04.006.
Blackburn GA. 1998. Quantifying chlorophylls and caroteniods at leaf and canopy scales: An evaluation of some hyperspectral approaches. Remote Sens Environ 66 (3): 273-285. DOI: 10.1016/S0034-4257(98)00059-5.
Candra ED, Hartono, Wicaksono P. 2016. Above ground carbon stock estimates of mangrove forest using Worldview-2 imagery in Teluk Benoa, Bali. IOP Conf Ser: Earth Environ Sci 47: 012014. DOI: 10.1088/1755-1315/47/1/012014.
Chowdhury A, Naz A, Dasgupta R, Maiti SK. 2022. Blue carbon: Comparison of chronosequences from Avicennia marina plantation and Proteresia coarctata dominated mudflat, at the world’s largest mangrove wetland. Sustainability 15 (1): 368. DOI: 10.3390/su15010368.
Curran PJ, Windham WR, Gholz HL. 1995. Exploring the relationship between reflectance red edge and chlorophyll concentration in slash pine leaves. Tree Physiol 15 (3): 203-206. DOI: 10.1093/treephys/15.3.203.
Dan TT, Chen CF, Chiang SH, Ogawa S. 2016. Mapping and change analysis in mangrove forest by using Landsat imagery. ISPRS Ann Photogramm Remote Sens Spat Inf Sci III–8: 109-116. DOI: 10.5194/isprsannals-iii-8-109-2016.
Daughtry CS, Walthall CL, Kim MS, De Colstoun EB, McMurtrey III JE. 2000. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens Environ 74 (2): 229-239. DOI: 10.1016/S0034-4257(00)00113-9.
Dinilhuda A, Akbar AA, Herawaty H. 2020. Potentials of mangrove ecosystem as storage of carbon for global warming mitigation. Biodiversitas 21 (11): 5353-5362. DOI: 10.13057/biodiv/d211141.
Dong S, Chen Z, Gao B, Guo H, Sun D, Pan Y. 2020. Stratified even sampling method for accuracy assessment of land use/land cover classification: A case study of Beijing, China. Intl J Remote Sens 41 (16): 6427-6443. DOI: 10.1080/01431161.2020.1739349.
Dube T, Gara TW, Mutanga O, Sibanda M, Shoko C, Murwir A, Hatendi CM. 2018. Estimating forest standing biomass in savanna woodlands as an indicator of forest productivity using the new generation WorldView-2 sensor. Geocarto Intl 33 (2): 178-188. DOI: 10.1080/10106049.2016.1240717.
Fadaei H, Suzuki R, Sakai T, Torii K. 2012. A proposed new vegetation index, the Total Ratio Vegetation Index (TRVI), for arid and semi-arid regions. Intl Arch Photogramm Remote Sens Spat Inf Sci XXXIX-B8: 403-407. DOI: 10.5194/isprsarchives-xxxix-b8-403-2012.
Fourqurean JW, Johnson B, Kauffman JB, Kennedy H, Lovelock CE, Megonigal JP, Rahman A, Saintilan N, Simard M. 2019. Coastal Blue Carbon. Habitat Conservation, Ci, 860. http://www.habitat.noaa.gov/coastalbluecarbon.html.
Giri C, Ochieng E, Tieszen LL, Zhu Z, Singh A, Loveland T, Masek J, Duke N. 2011. Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecol Biogeogr 20 (1): 154-159. DOI: 10.1111/j.1466-8238.2010.00584.x.
Gitelson AA, Shashi BV, Andreas V, Donald CR, Galina K, Bryan L, Timothy JA, George GB, Andrew ES. 2003. Novel technique for remote estimation of CO2 flux in maize. Geophys Res Lett 30 (9): 1486. DOI: 10.1029/2002GL016543.
Goswami J, Das R, Sarma KK, Raju PN. 2021. Red Edge Position (REP), an indicator for crop stress detection: Implication on rice (Oryza sativa L). Int J Environ Clim Chang 11 (4): 88-96. DOI: 10.9734/ijecc/2021/v11i430396.
Haboudane D, Miller JR, Tremblay N, Zarco-Tejada PJ, Dextraze L. 2002. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens Environ 81 (2-3): 416-426. DOI: 10.1016/S0034-4257(02)00018-4.
Hati JP, Mukhopadhyay A, Chaube NR, Hazra S, Pramanick N, Gupta K, Bharadwaz GSVSA, Mitra D. 2024. Estimation of above ground biomass with Synthetic Aperture Radar (SAR) data in Lothian Island, Sundarbans, India. J Indian Soc Remote Sens 52(4): 757-769. DOI: 10.1007/s12524-023-01788-9.
Hickey SM, Callow NJ, Phinn S, Lovelock CE, Duarte CM. 2018. Spatial complexities in aboveground carbon stocks of a semi-arid mangrove community: A remote sensing height-biomass-carbon approach. Estuar Coast Shelf Sci 200: 194-201. DOI: 10.1016/j.ecss.2017.11.004.
Hidayah Z, Utama RYS, As-Syakur AR, Rachman HA, Wiyanto DB. 2024. Mapping mangrove above ground carbon stock of Benoa Bay Bali using sentinel-1 satellite imagery. IOP Conf Ser Earth Environ Sci 1298 (1): 012013. DOI: 10.1088/1755-1315/1298/1/012013.
Hoa NH, Son HT, Linh NT, de Vicent DO, Linh NN. 2023. Using Planetscope data to estimate carbon sequestration of mangrove forests: A case study in Tien Yen District, Quang Ninh Province. J For Sci Technol 15: 87-99. DOI: 10.55250/jo.vnuf.2023.15.087-099.
Imran HA, Gianelle D, Rocchini D, Dalponte M, Martín MP, Sakowska K, Wohlfahrt G, Vescovo L. 2020. VIS-NIR, red-edge and NIR-shoulder based normalized vegetation indices response to co-varying leaf and canopy structural traits in heterogeneous grasslands. Remote Sensing 12 (14): 2254. DOI: 10.3390/rs12142254.
Indonesian National Standard (SNI). 2011. Pengukuran dan Perhitungan Cadangan Karbon– Pengukuran Lapangan untuk Penaksiran Cadangan Karbon Hutan (Ground Based Forest Carbon Accounting). Badan Standardisasi Nasional, Jakarta. [Indonesian]
Iqbal MH. 2020. Valuing ecosystem services of Sundarbans mangrove forest for improved conservation: Approach of randomized conjoint experiment. For Econ Rev 2 (1): 117-132. DOI: 10.1108/fer-04 2020-0008.
Kauffman JB, Donato DC. 2012. Protocols for the Measurement, Monitoring and Reporting of Structure, Biomass and Carbon Stocks in Mangrove Forests. Working Paper 86. CIFOR, Bogor, Indonesia.
KKP. 2020. Ecosystem ATP Gili Matra. Marine and Fisheries of Republic Indonesia p.2443. [Indonesian]
Komiyama A, Poungparn S, Kato S. 2005. Common allometric equations for estimating the tree weight of mangroves. J Trop Ecol 21 (4): 471-477. DOI: 10.1017/S0266467405002476.
Kristensen E, Bouillon S, Dittmar T, Marchand C. 2008. Organic carbon dynamics in mangrove ecosystems: A review. Aquat Bot 89 (2): 201-219. DOI: 10.1016/j.aquabot.2007.12.005.
Kumar L, Mutanga O. 2017. Remote sensing of above-ground biomass. Remote Sens 9 (9): 935. DOI: 10.3390/rs9090935.
Liu L, Dong Y, Huang W, Du X, Ren B, Huang L, Zheng Q, Ma H. 2020. A disease index for efficiently detecting wheat fusarium head blight using sentinel-2 multispectral imagery. IEEE Access 8: 52181-52191. DOI: 10.1109/ACCESS.2020.2980310.
Mariano NM, da Silva JB, de Brito HC. 2024. Carbon stock estimation in a Brazilian mangrove using optical satellite data. Environ Monit Assess 196 (1): 9. DOI: 10.1007/s10661-023-12151-3.
Maurya K, Mahajan S, Chaube N. 2021. Remote sensing techniques: Mapping and monitoring of mangrove ecosystem—A review. Complex Intell Syst 7 (6): 2797-2818. DOI: 10.1007/s40747-021-00457-z.
Murdiyarso D, Purbopuspito J, Kauffman JB et al. 2015. The potential of Indonesian mangrove forests for global climate change mitigation. Nat Clim Chang 5 (12): 1089-1092. DOI: 10.1038/NCLIMATE2734.
Nguy-Robertson AL, Peng Y, Gitelson AA et al. 2014. Estimating green LAI in four crops: Potential of determining optimal spectral bands for a universal algorithm. Agric For Meteorol 192-193: 140-148. DOI: 10.1016/j.agrformet.2014.03.004.
Pham TD, Yoshino K, Le NN, Bui DT. 2018. Estimating aboveground biomass of a mangrove plantation on the Northern coast of Vietnam using machine learning techniques with an integration of ALOS-2 PALSAR-2 and Sentinel-2A data. Intl J Remote Sens 39 (22): 7761-7788. DOI: 10.1080/01431161.2018.1471544.
Purnamasari E, Kamal M, Wicaksono P. 2020. Relationship analysis of vegetation structural properties and the aboveground carbon stock of mangrove forest. E3S Web Conf 200: 02020. DOI: 10.1051/e3sconf/202020002020.
Purnamasari E, Kamal M, Wicaksono P. 2021. Comparison of vegetation indices for estimating above-ground mangrove carbon stocks using PlanetScope image. Reg Stud Mar Sci 44: 101730. DOI: 10.1016/j.rsma.2021.101730.
Rahman FA, Hadi AP. 2021. Kandungan C-organik substrat ekosistem mangrove di danau air asin Gili Meno Kabupaten Lombok Utara. Bioscientist 9 (2): 516-526. DOI: 10.33394/bioscientist.v9i2.4276. [Indonesian]
Ramdani F, Rahman S, Giri C. 2018. Principal polar spectral indices for mapping mangroves forest in South East Asia: study case Indonesia. Intl J Digit Earth 12 (10): 1103-1117. DOI: 10.1080/17538947.2018.1454516.
Rijal SS, Pham TD, Noer’Aulia S, Putera MI, Saintilan N. 2023. Mapping mangrove above-ground carbon using multi-source remote sensing data and machine learning approach in Loh Buaya, Komodo National Park, Indonesia. Forests 14 (1): 94. DOI: 10.3390/f14010094.
Rondeaux G, Steven M, Baret F. 1996. Optimization of soil-adjusted vegetation indices. Remote Sens Environ 55 (2): 95-107. DOI: 10.1016/0034-4257(95)00186-7.
Rouse J, Haas R, Schell J, Deering D. 1973. Monitoring vegetation systems in the great plains with ERTS. Proc Earth Resour Technol Satell Symp 1: 309-317.
Sadeghi M, Jones SB, Philpot WD. 2015. A linear physically-based model for remote sensing of soil moisture using short wave infrared bands. Remote Sens Environ 164: 66-76. DOI: 10.1016/j.rse.2015.04.007.
Saragi-Sasmito MF, Murdiyarso D, June T, Sasmito SD. 2018. Carbon stocks, emissions, and aboveground productivity in restored secondary tropical peat swamp forests. Mitig Adapt Strateg Glob Chang 24: 521-533. DOI: 10.1007/s11027-018-9793-0.
She B, Yang Y, Zhao Z, Huang L, Liang D, Zhang D. 2020. Identification and mapping of soybean and maize crops based on Sentinel-2 data. Intl J Agric Biol Eng 13 (6): 171-182. DOI: 10.25165/j.ijabe.20201306.6183.
Sibanda M, Mutanga O, Rouget M. 2015. Examining the potential of Sentinel-2 MSI spectral resolution in quantifying above ground biomass across different fertilizer treatments. ISPRS J Photogramm Remote Sens 110: 55-65. DOI: 10.1016/j.isprsjprs.2015.10.005.
Simarmata N, Wikantika K, Tarigan TA, Aldyansyah M, Tohir RK, Fauziah A, Purnama Y. 2021. Analisis transformasi indeks NDVI, NDWI dan SAVI untuk identifikasi kerapatan vegetasi mangrove menggunakan citra Sentinel di Peisisir Timur Provinsi Lampung. Jurnal Geografi 19 (2): 69-79. DOI: 10.26740/jggp.v19n2.p69-79. [Indonesian]
Suardana AAMAP, Anggraini N, Nandika MR Aziz K, As-syakur AR, Ulfa A, Wijaya AD, Prasetio W, Winarso G, Dimyati RD. 2023. Estimation and mapping above-ground mangrove carbon stock using Sentinel-2 data derived vegetation indices in Benoa Bay of Bali Province, Indonesia. For Soc 7 (1): 116-134. DOI: 10.24259/fs.v7i1.22062.
Suardana AMAP, Anggraini N, Aziz K, Nandika MR, Ulfa A, Wijaya AD, As-syakur AR, Winarso G, Prasetio W, Dewanti R. 2022. Biomass estimation model and carbon dioxide sequestration for mangrove forest using Sentinel-2 in Benoa Bay, Bali. Intl J Remote Sens Earth Sci 19 (1): 91-100. DOI: 10.30536/j.ijreses.2022.v19.a3797
Suwa R, Rollon R, Sharma S, Yoshikai M, Albano GMG, Ono K, Adi NS, Ati RNA, Kusumaningtyas MA, Kepel TL, Maliao RJ, Primavera-Tirol YH, Blanco AC, Nadaoka K. 2021. Mangrove biomass estimation using canopy height and wood density in the South East and East Asian regions. Estuar Coast Shelf Sci 248: 106937. DOI: 10.1016/j.ecss.2020.106937.
Suwanto A, Takarina ND, Koestoer RH, Frimawaty E. 2021. Diversity, biomass, covers, and ndvi of restored mangrove forests in Karawang and Subang coasts, West Java, Indonesia. Biodiversitas 22 (9): 4115-4122. DOI: 10.13057/biodiv/d220960.
Wahyuni S, Haerani H, Mursalim M, Azizan FA. 2024. The use of Sentinel-2 vegetation indices imagery in detecting the effect of plant distance to the productivity of corn crops. BIO Web Conf 96: 05001. DOI: 10.1051/bioconf/20249605001.
Wang B, Jia K, Liang S, Xie X, Wei X, Zhao X, Yao Y, Zhang X. 2018. Assessment of Sentinel-2 MSI spectral band reflectances for estimating fractional vegetation cover. Remote Sens 10 (12): 1927. DOI: 10.3390/rs10121927.
Wicaksono P, Danoedoro P, Hartono, Nehren U. 2016. Mangrove biomass carbon stock mapping of the Karimunjawa Islands using multispectral remote sensing. Intl J Remote Sens 37 (1): 26-52. DOI: 10.1080/01431161.2015.1117679.
World Agroforestry Center. 2022. http://db.worldagroforestry.org/wd
Worthington TA, Andradi-Brown DA, Bhargava R et al. 2020. Harnessing big data to support the conservation and rehabilitation of mangrove forests globally. One Earth 2 (5): 429-443. DOI: 10.1016/j.oneear.2020.04.018.
Zhang T, Lin W. 2014. Metal–organic frameworks for artificial photosynthesis and photocatalysis. Chem Soc Rev 43 (16): 5982-5993. DOI: 10.1039/C4CS00103F.
Zheng H, Cheng T, Li D, Zhou X, Yao X, Tian Y, Cao W, Zhu Y. 2018. Evaluation of RGB, color-infrared and multispectral images acquired from unmanned aerial systems for the estimation of nitrogen accumulation in rice. Remote Sens 10 (6): 824. DOI: 10.3390/rs10060824.
Zhou X, Zhang J, Chen D, Huang Y, Kong W, Yuan L, Ye H, Huang W. 2020. Assessment of leaf chlorophyll content models for winter wheat using Landsat-8 multispectral remote sensing data. Remote Sens 12 (16): 2574. DOI: 10.3390/rs12162574.
Zhu Y, Liu K, Liu L, Myint SW, Wang S, Liu H, He Z. 2017. Exploring the potential of world view-2 red-edge band-based vegetation indices for estimation of mangrove leaf area index with machine learning algorithms. Remote Sens 9 (10): 1060. DOI: 10.3390/rs9101060.

Most read articles by the same author(s)