Isolation of Trichoderma strains from rhizospheric soil and assessment of their potential for biofertilizer from freshwater aquaculture pond sediment

##plugins.themes.bootstrap3.article.main##

QUACH VAN CAO THI
TRAN HOANG NHAN
NGUYEN VIET KHANH HUNG
NGUYEN PHUONG THUY

Abstract

Abstract. Thi QVC, Nhan TH, Hung NVK, Thuy NP. 2024. Isolation of Trichoderma strains from rhizospheric soil and assessment of their potential for biofertilizer from freshwater aquaculture pond sediment. Biodiversitas 25: 2866-2876. Trichoderma spp. are filamentous fungi found in almost all soils and can synthesize massive quantities of cellulase enzymes which can simply break down cellulose polysaccharides. Freshwater water aquaculture pond sediment has caused some environmental pollution which is required to be properly dealt with. The objective of this study was to isolate Trichoderma strains from rhizosphere soil and to evaluate their potential for biofertilizer from freshwater aquaculture pond sediments. Twenty-six strains of Trichoderma spp. were isolated from soil. The Carboxymethyl Cellulose (CMC) degrading ability of the S25 strain was extremely strong, with a halo diameter zone measuring 8.9±3.8 cm. According to the BLAST result, there was 99.11% similarity between S25 strains and Trichoderma asperelloides, with a max score of 1011 and an E-value of 0.0. The T. asperelloides S25 was selected for bioproduct production. The use of T. asperelloides S25 bioproduct passively enhanced the efficient decomposition of organic fertilizers. After just 30 days of incubation, total organic matter content was ? 30% and material had a spongy, soft, and brown-black in color. According to the Government of Vietnam’s Decree No. 14/2019/ND-CP on fertilizer management, dated September 14, 2019, all treatments were chosen for the production of granular bio-compost. These findings highlight the potential of bioproduct T. asperelloides S25 for sustainable aquaculture practices and organic waste management.

##plugins.themes.bootstrap3.article.details##

References
Alwadai AS, Perveen K, Alwahaibi M. 2022. The isolation and characterization of antagonist Trichoderma spp. from the soil of Abha, Saudi Arabia. Molecules 27 (8): 2525. DOI: 10.3390/molecules27082525.
Anees M, Azim R, Ur Rehman S, Jamil M, El Hendawy SE, Al-Suhaiban NA. 2018. Antifungal potential of Trichoderma strains originated from North Western regions of Pakistan against the plant pathogens. Pak J Bot 50 (5): 2031-2040.
Anh PT, Kroeze C, Bush SR, Mol APJ. 2010. Water pollution by intensive brackish shrimp farming in south-east Vietnam: Causes and options for control. Agric Water Manag 97 (6): 872-882. DOI: 10.1016/j.agwat.2010.01.018.
Attitalla IH, Abdelrawaf SS, Omar KS, El-Komi HMA, Sarwar M. 2012. Occurrence and microbiological characteristics of Trichoderma in Al-Jabal Al-Akhdar Region, Libya. J Biol Sci 12 (4): 209-217. DOI: 10.3923/jbs.2012.209.217.
Awad NE, Kaseem HA, Hamed MA, El-Feky AM, Elnaggar MAA, Mahmoud K, Ali MA. 2018. Isolation and characterization of the bioactive metabolites from the soil derived fungus Trichoderma viride. Mycology 9 (1): 70-80. DOI: 10.1080/21501203.2017.1423126.
Awasthi MK, Pandey AK, Bundela PS, Khan J. 2015. Co-composting of organic fraction of municipal solid waste mixed with different bulking waste: Characterization of physicochemical parameters and microbial enzymatic dynamic. Bioresour Technol 182: 200-207. DOI: 10.1016/j.biortech.2015.01.104.
Azim K, Soudi B, Boukhari S, Perissol C, Roussos S, Thami Alami I. 2018. Composting parameters and compost quality: A literature review. Org Agric 8: 141-158. DOI: 10.1007/s13165-017-0180-z.
Bellemain E, Carlsen T, Brochmann C, Coissac E, Taberlet P, Kauserud H. 2010. ITS as an environmental DNA barcode for fungi: An in silico approach reveals potential PCR biases. BMC Microbiol 10: 189. DOI: 10.1186/1471-2180-10-189.
Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Ostell J, Pruitt KD, Sayers EW. 2018. GenBank. Nucleic Acids Res 46 (D1): D41-D47. DOI: 10.1093/nar/gkx1094.
Bissett J, Gams W, Jaklitsch W, Samuels GJ. 2015. Accepted Trichoderma names in the year 2015. IMA Fungus 6 (2): 263-295. DOI: 10.5598/imafungus.2015.06.02.02.
Boczek LA, Rice EW, Johnson CH. 2014. Encyclopedia of Food Microbiology. Elsevier, Amsterdam, Netherlands.
Bull EG, da N Cunha CdeL, Scudelari AC. 2021. Water quality impact from shrimp farming effluents in a tropical estuary. Water Sci Technol 83 (1): 123-136. DOI: 10.2166/wst.2020.559.
Cao R, Wang J, Ben W, Qiang Z. 2020. The profile of antibiotic resistance genes in pig manure composting shaped by composting stage: Mesophilic-thermophilic and cooling-maturation stages. Chemosphere 250: 126181. DOI: 10.1016/j.chemosphere.2020.126181.
Chang Y-T, Lee C-H, Hsieh C-Y, Chen T-C, Jien S-H. 2023. Using fluorescence spectroscopy to assess compost maturity degree during composting. Agronomy 13 (7): 1870. DOI: 10.3390/agronomy13071870.
Da CT, Tu PA, Livsey J, Tang VT, Berg H, Manzoni S. 2020. Improving productivity in integrated fish-vegetable farming systems with recycled fish pond sediments. Agronomy 10 (7): 1025. DOI: 10.3390/agronomy10071025.
Da CT, Vu TH, Duy DT, Ty NM, Thanh DT, Nguyen-Le M-T, Berg H, Nguyen Q-H, Bui X-T. 2021. Recycled pangasius pond sediments as organic fertilizer for vegetables cultivation: Strategies for sustainable food production. Clean Technol Environ Policy 25: 369-380. DOI: 10.1007/s10098-021-02109-9.
Damaceno FM, de Abreu CM, de Souza Batista I, do Nascimento Pinheiro LF, Serralheiro RM, Edwiges T. 2021. Centralized treatment of waste through composting: Influence of the c/n ratio and bulking agent. Environ Eng Manag J 20 (7): 1147. DOI: 10.30638/eemj.2021.106.
de Souza MF, da Silva ASA, Bon EPS. 2018. A novel Trichoderma Harzianum strain from the amazon forest with high cellulolytic capacity. Biocatal Agric Biotechnol 14: 183-188. DOI: 10.1016/j.bcab.2018.03.008.
Dong BX, Nguyen HV. 2000. Fungi in Biotechnology. Science and Technology Publishing, UK.
Dró?d? D, Mali?ska K, Kacprzak M, Mrowiec M, Szczypiór A, Postawa P, Stachowiak T. 2020b. Potential of fish pond sediments composts as organic fertilizers. Waste Biomass Valor 11: 5151-5163. DOI: 10.1007/s12649-020-01074-6.
Dró?d? D, Mali?ska K, Mazurkiewicz J, Kacprzak M, Mrowiec M, Szczypiór A, Postawa P, Stachowiak T. 2020a. Fish pond sediment from aquaculture production-current practices and the potential for nutrient recovery: A review. Intl Agrophys 34 (1): 33-41. DOI: 10.31545/intagr/116394.
Elad Y, Chet I, Henis Y. 1981. A selective medium for improving quantitative isolation of Trichoderma spp. from soil. Phytoparasitica 9: 59-67. DOI: 10.1007/BF03158330.
El-Sobky MA, Fahmi AI, Eissa RA, El-Zanaty AM. 2019. Genetic characterization of Trichoderma spp. isolated from different locations of Menoufia, Egypt and assessment of their antagonistic ability. J Microb Biochem Technol 11 (1): 409. DOI: 10.4172/1948-5948.1000409.
Fahmi AI, Eissa RA, El-Halfawi KA, Hamza HA, Helwa MS. 2016. Identification of Trichoderma spp. by DNA barcode and screening for cellulolytic activity. J Microb Biochem Technol 8 (3): 202-209. DOI: 10.4172/1948-5948.1000286.
FAO. 2020. The State of World Fisheries and Aquaculture. Sustainability in Action. FAO, Rome.
Ferreira FV, Herrmann?Andrade AM, Calabrese CD, Bello F, Vázquez D, Musumeci MA. 2020. Effectiveness of Trichoderma strains isolated from the rhizosphere of citrus tree to control Alternaria alternata, Colletotrichum gloeosporioides and Penicillium digitatum A21 resistant to pyrimethanil in post?harvest oranges (Citrus sinensis L.(Osbeck)). J Appl Microbiol 129 (3): 712-727. DOI: 10.1111/jam.14657.
GSO. General Statistics Office of Vietnam. 2021. Statistical data on fisheries. https://www.gso.gov.vn/nong-lam-nghiep-va-thuy-san.
Gupta VG, Schmoll M, Herrera-Estrella A, Upadhyay RS, Druzhinina I, Tuohy MG. 2014. Biotechnology and Biology of Trichoderma. Elsevier, Amsterdam, Netherlands. DOI: 10.1016/C2012-0-00434-6.
Haque MM, Belton B, Alam MM, Ahmed AG, Alam MR. 2016. Reuse of fish pond sediments as fertilizer for fodder grass production in Bangladesh: Potential for sustainable intensification and improved nutrition. Agric Ecosyst Environ 216: 226-236. DOI: 10.1016/j.agee.2015.10.004.
Hashim S, Waqas M, Rudra RP, Khan AA, Mirani AA, Sultan T, Ehsan F, Abid M, Saifullah M. 2022. On?farm composting of agricultural waste materials for sustainable agriculture in Pakistan. Scientifica 2022: 5831832. DOI: 10.1155/2022/5831832.
Hassan MM, Farid MA, Gaber A. 2019. Rapid identification of Trichoderma Koningiopsis and Trichoderma Longibrachiatum using sequence-characterized amplified region markers. Egypt J Biol Pest Control 29: 13. DOI: 10.1186/s41938-019-0113-0.
Hidalgo D, Corona F, Martín-Marroquín JM. 2022. Manure biostabilization by effective microorganisms as a way to improve its agronomic value. Biomass Convers Bioref 12: 4649-4664. DOI: 10.1007/s13399-022-02428-x.
Hinterdobler W, Li G, Spiegel K, Basyouni-Khamis S, Gorfer M, Schmoll M. 2021. Trichoderma Reesei isolated from Austrian soil with high potential for biotechnological application. Front Microbiol 12: 552301. DOI: 10.3389/fmicb.2021.552301.
Illescas M, Pedrero-Méndez A, Pitorini-Bovolini M, Hermosa R, Monte E. 2021. Phytohormone production profiles in Trichoderma species and their relationship to wheat plant responses to water stress. Pathogens 10 (8): 991. DOI: 10.3390/pathogens10080991.
Jain MS, Daga M, Kalamdhad AS. 2019. Variation in the key indicators during composting of municipal solid organic wastes. Sustain Environ Res 29: 9. DOI: 10.1186/s42834-019-0012-9.
Jaisani PR, Pandey RN. 2017. Morphological and molecular characterization for identification of isolates of Trichoderma spp. from rhizospheric soils of crops in middle Gujarat. Indian Phytopathol 70 (2): 238-245. DOI: 10.24838/ip.2017.v70.i2.71652.
Kim SH, Lee Y, Balaraju K, Jeon Y. 2023. Evaluation of Trichoderma atroviride and Trichoderma longibrachiatum as biocontrol agents in controlling red pepper anthracnose in Korea. Front Plant Sci 14: 1201875. DOI: 10.3389/fpls.2023.1201875.
Korkom Y, Yildiz A. 2022. Evaluation of biocontrol potential of native Trichoderma isolates against charcoal rot of strawberry. J Plant Pathol 104 (2): 671-682. DOI: 10.1007/s42161-022-01063-9.
Korkom Y, Y?ld?z A. 2024. First report of Trichoderma guizhouense isolated from soil in Türkiye. J Plant Dis Prot 131: 619-625. DOI: 10.1007/s41348-023-00828-3.
Koul B, Yakoob M, Shah MP. 2022. Agricultural waste management strategies for environmental sustainability. Environ Res 206: 112285. DOI: 10.1016/j.envres.2021.112285.
Kraemer SA, Ramachandran A, Perron GG. 2019. Antibiotic pollution in the environment: From microbial ecology to public policy. Microorganisms 7 (6): 180. DOI: 10.3390/microorganisms7060180.
Kuhls K, Lieckfeldt E, Samuels GJ, Meyer W, Kubicek CP, Börner T. 1997. Revision of Trichoderma Sect. Longibrachiatum including related teleomorphs based on analysis of ribosomal DNA internal transcribed spacer sequences. Mycologia 89 (3): 442-460. DOI: 10.1080/00275514.1997.12026803.
Ling N, Deng K, Song Y, Wu Y, Zhao J, Raza W, Huang Q, Shen Q. 2014. Variation of rhizosphere bacterial community in watermelon continuous mono-cropping soil by long-term application of a novel bioorganic fertilizer. Microbiol Res 169 (7-8): 570-578. DOI: 10.1016/j.micres.2013.10.004.
Marhuenda-Egea FC, Martínez-Sabater E, Jordá J, Moral R, Bustamante MA, Paredes C, Pérez-Murcia MD. 2007. Dissolved organic matter fractions formed during composting of winery and distillery residues: Evaluation of the process by fluorescence excitation-emission matrix. Chemosphere 68 (2): 301-309. DOI: 10.1016/j.chemosphere.2006.12.075.
Matas-Baca MÁ, García CU, Pérez-Álvarez S, Flores-Córdova MA, Escobedo-Bonilla CM, Magallanes-Tapia MA, Chávez ES. 2022. Morphological and molecular characterization of a new autochthonous Trichoderma sp. isolate and its biocontrol efficacy against Alternaria sp. Saudi J Biol Sci 29 (4): 2620-2625. DOI: 10.1016/j.sjbs.2021.12.052.
Mazrou YSA, Makhlouf AH, Elseehy MM, Awad MF, Hassan MM. 2020. Antagonistic activity and molecular characterization of biological control agent Trichoderma Harzianum from Saudi Arabia. Egypt J Biol Pest Control 30: 4. DOI: 10.1186/s41938-020-0207-8.
Meng Q, Yang W, Men M, Bello A, Xu X, Xu B, Deng L, Jiang X, Sheng S, Wu X, Han Y, Zhu H. 2019. Microbial community succession and response to environmental variables during cow manure and corn straw composting. Front Microbiol 10: 529. DOI: 10.3389/fmicb.2019.00529.
Mukhopadhyay R, Kumar D. 2020. Trichoderma: A beneficial antifungal agent and insights into its mechanism of biocontrol potential. Egypt J Biol Pest Control 30: 133. DOI: 10.1186/s41938-020-00333-x.
Nam TT. 2022. Huge Potential Remains in Exploiting Agricultural by-products. Vietnam News. https://vietnamnews.vn/economy/1341838/huge-potential-remains-in-exploiting-agricultural-by-products.html.
Nandini B, Puttaswamy H, Saini RK, Prakash HS, Geetha N. 2021. Trichovariability in rhizosphere soil samples and their biocontrol potential against downy mildew pathogen in pearl millet. Sci Rep 11 (1): 9517. DOI: 10.1038/s41598-021-89061-2.
Nayak S, Mukherjee AK. 2015. Management of agricultural wastes using microbial agents. In: Singh RP, Sarkar A (eds). Waste Management: Challenges, Threats and Opportunities. Nova Scientific, USA.
Nguyen TAT, Nguyen KAT, Jolly C. 2019. Is super-intensification the solution to shrimp production and export sustainability? Sustainability 11 (19): 5277. DOI: 10.3390/su11195277.
Oszust K, Pylak M, Fr?c M. 2021. Trichoderma-based biopreparation with prebiotics supplementation for the naturalization of raspberry plant rhizosphere. Intl J Mol Sci 22 (12): 6356. DOI: 10.3390/ijms22126356.
Panse VG, Pandurang VS. 1954. Statistical methods for agricultural workers. ICAR, New Delhi.
Pezzolla D, Cucina M, Proietti P, Calisti R, Regni L, Gigliotti G. 2021. The use of new parameters to optimize the composting process of different organic wastes. Agronomy 11 (10): 2090. DOI: 10.3390/agronomy11102090.
Puspaningsih D, Supriyono E, Nirmala K, Rusmana I, Kusmana C, Widiyati A. 2018. The dynamics of water quality during culture of snakehead fish (Channa Striata) in the aquarium. Omni-Akuatika 14 (2): 123-131. DOI: 10.20884/1.oa.2018.14.2.568.
Rastogi M, Nandal M, Khosla B. 2020. Microbes as vital additives for solid waste composting. Heliyon 6 (2): e03343. DOI: 10.1016/j.heliyon.2020.e03343.
Reyes-Torres M, Oviedo-Ocaña ER, Dominguez I, Komilis D, Sánchez A. 2018. A systematic review on the composting of green waste: Feedstock quality and optimization strategies. Waste Manag 77: 486-499. DOI: 10.1016/j.wasman.2018.04.037.
Sambrook J, Fritsch ER, Maniatis T. 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
Shahid M, Srivastava M, Sharma A, Kumar V, Pandey S, Singh A. 2013. Morphological, molecular identification and SSR marker analysis of a potential strain of Trichoderma/Hypocrea for production of a bioformulation. J Plant Pathol Microb 4 (10): 1000204. DOI: 10.4172/2157-7471.1000204.
Siddaiah CN, Satyanarayana NR, Mudili V, Gupta VK, Gurunathan S, Rangappa S, Huntrike SS, Srivastava RK. 2017. Elicitation of resistance and associated defense responses in Trichoderma Hamatum induced protection against pearl millet downy mildew pathogen. Sci Rep 7: 43991. DOI: 10.1038/srep43991.
Suwoyo HS, Tuwo A, Haryati, Anshary H, Syah R. 2020. The utilizations of solid waste originating from super intensive shrimp farm as organic fertilizers for natural feed productions. IOP Conf Ser: Earth Environ Sci 473: 12110. DOI: 10.1088/1755-1315/473/1/012110.
Thanh DT, Ty NM, Hien NV, Berg H, Nguyen TKO, Vu PT, Minh VQ, Da CT. 2023. Effects of organic fertilizers produced from fish pond sediment on growth performances and yield of Malabar and Amaranthus vegetables. Front Sustain Food Syst 7: 1045592. DOI: 10.3389/fsufs.2023.1045592.
Tri NN, Tu NPC, Nhan DT, Tu NV. 2021. An overview of aquaculture development in Viet Nam. Proc Intl Conf Fish Aquac 7 (1): 53-73. DOI: 10.17501/23861282.2021.7105.
Ugak MAM, Yaser AZ, Lamaming J, Subin EK, Rajin M, Saalah S, Tze FWH, Abang S. 2022. Comparative study on passive aerated in-vessel composting of food wastes with the addition of sabah ragi. Carbon Resour Convers 5 (3): 200-210. DOI: 10.1016/j.crcon.2022.05.004.
Vico A, Pérez-Murcia MD, Bustamante MA, Agulló E, Marhuenda-Egea FC, Sáez JA, Paredes C, Pérez-Espinosa A, Moral R. 2018. Valorization of date palm (Phoenix dactylifera L.) pruning biomass by co-composting with urban and agri-food sludge. J Environ Manag 226: 408-415. DOI: 10.1016/j.jenvman.2018.08.035.
Waszkielis KM, Wronowski R, Chlebus W, Bia?obrzewski I, Dach J, Pilarski K, Janczak D. 2013. The effect of temperature, composition and phase of the composting process on the thermal conductivity of the substrate. Ecol Eng 61 (Part A): 354-357. DOI: 10.1016/j.ecoleng.2013.09.024.
Xue M, Wang R, Zhang C, Wang W, Zhang F, Chen D, Ren S, Manman Z, Hou J, Liu T. 2021. Screening and identification of trichoderma strains isolated from natural habitats in China with potential agricultural applications. BioMed Res Intl 2021: 7913950. DOI: 10.1155/2021/7913950.
Zhang L, Sun X. 2016. Influence of bulking agents on physical, chemical, and microbiological properties during the two-stage composting of green waste. Waste Manag 48: 115-126. DOI: 10.1016/j.wasman.2015.11.032.

Most read articles by the same author(s)