The effects of Lactobacillus plantarum addition to robusta coffee (Coffea canephora L.) during wet fermentation

##plugins.themes.bootstrap3.article.main##

YULIANA RENI SWASTI
LAI PENG LEONG
EKAWATI PURWIJANTININGSIH
FRANCISCUS SINUNG PRANATA

Abstract

Abstract. Swasti YR, Leong LP, Purwijantiningsih E, Pranata FS. 2024. The effects of Lactobacillus plantarum addition to robusta coffee (Coffea canephora L.) during wet fermentation. Biodiversitas 25: 3132-3140. Robusta coffee from the slopes of Merapi volcano in Indonesia is processed using a wet fermentation method. Its chemistry compound quality depends on the spontaneous microorganism during wet fermentation. This study aimed to investigate the effect of Lactobacillus plantarum in increasing the antioxidant activity and reducing the concentration of caffeine and mutagenic compounds during fermentation. After fermentation, the chemical compounds of green and roasted beans were determined. The furfuryl alcohol compound and protein were only analyzed in the roasted beans. Results showed that the addition of L. plantarum was able to alter the Chlorogenic Acid (CGA) concentration of robusta coffee. The concentration of CGA in the unroasted robusta coffee with the addition of L. plantarum after 6-hour of fermentation tends to be higher than in without the addition of L. plantarum, while caffeine concentration was slightly reduced. The CGA in unroasted and roasted coffee with 12-hour fermentation period resulted in the highest radical ABTS scavenging capacity. Moreover, caffeine in unroasted and roasted coffee with 6-hour fermentation period showed high radical ABTS scavenging capacity. The furfuryl alcohol content tends to be stable.

##plugins.themes.bootstrap3.article.details##

References
Abbott PJ. 2011. Who Food Additives Series 46: Furfuryl Alcohol and Related Substances. Inchem, Australia-New Zealand Food Authority, Canberra, Australia.
Abreu RV, Silva-Oliveira EM, Moraes MF, Pereira GS, Moraes-Santos T. 2011. Chronic coffee and caffeine ingestion effects on the cognitive function and antioxidant system of rat brains. Pharmacol Biochem Behav 99 (4): 659-664. DOI: 10.1016/j.pbb.2011.06.010.
Albouchi A, Murkovic M. 2018. Formation kinetics of furfuryl alcohol in a coffee model system. Food Chem 243: 91-95. DOI: 10.1016/j.foodchem.2017.09.112.
Avallone S, Guyot B, Brillouet J-M, Olguin E, Guiraud J-P. 2001. Microbiological and biochemical study of coffee fermentation. Curr Microbiol 42: 252-256. DOI: 10.1007/s002840110213.
Barbosa MSG, Scholz MBDS, Kitzberger CSG, Benassi MT. 2019. Correlation between the composition of green Arabica coffee beans and the sensory quality of coffee brews. Food Chem 292: 275-280. DOI: 10.1016/j.foodchem.2019.04.072.
Barragán PJ, Sánchez, ÓJ, Henao-Rojas JC. 2020. Evaluation of the growth kinetics of Lactobacillus plantarum atcc 8014 on a medium based on hydrolyzed bovine blood plasma at laboratory and bench-scale levels and its application as a starter culture in a meat product. Fermentation 6 (2): 45. DOI: 10.3390/FERMENTATION6020045.
Bel-Rhlid R, Thapa D, Kraehenbuehl K, Hansen CE, Fischer L. 2013. Biotransformation of caffeoyl quinic acids from green coffee extracts by Lactobacillus johnsonii NCC 533. AMB Express 3: 28. DOI: 10.1186/2191-0855-3-28.
Brando CHJ, Brando MF. 2014. Methods of Coffee Fermentation and Drying. In: Schwan RF, Fleet GH (eds). Cocoa and Coffee Fermentations, 1st Edition. CRC Press, Boca Raton.
Campanella D, Rizzello CG, Fasciano C, Gambacorta G, Pinto D, Marzani B, Scarano N, De Angelis M, Gobbetti M. 2017. Exploitation of grape marc as functional substrate for lactic acid bacteria and bifidobacteria growth and enhanced antioxidant activity. Food Microbiol 65: 25-35. DOI: 10.1016/j.fm.2017.01.019.
Caprioli G, Cortese M, Maggi F, Minnetti C, Odello L, Sagratini G, Vittori S. 2014. Quantification of caffeine, trigonelline and nicotinic acid in espresso coffee: The influence of espresso machines and coffee cultivars. Intl J Food Sci Nutr 65 (4): 465-469. DOI: 10.3109/09637486.2013.873890.
Cassimiro DMJ, Batista NN, Fonseca HC, Oliveira Naves JA, Coelho JM, Bernardes PC, Dias DR, Schwan RF. 2023. Wet fermentation of Coffea canephora by lactic acid bacteria and yeasts using the Self-Induced Anaerobic Fermentation (SIAF) method enhances the coffee quality. Food Microbiol 110: 104161. DOI: 10.1016/J.FM.2022.104161.
Cavin J-F, Barthelmebs L, Guzzo J, Beeumen JV, Samyn B, Travers J-F, Divies C. 1997. Purification and characterization of an inducible p-coumaric acid decarboxylase from Lactobacillus plantarum. FEMS Microbiol Lett 147: 291-295. DOI: 10.1111/j.1574-6968.1997.tb10256.x.
Darmawan R. 2023. Coffee Trade Performance Analysis. Pusat Data dan Sistem Informasi Pertanian, Ministry of Agriculture of Indonesia. [Indonesian]
Degrain A, Manhivi V, Remize F, Garcia C, Sivakumar D. 2020. Effect of lactic acid fermentation on color, phenolic compounds and antioxidant activity in African nightshade. Microorganisms 30 (8): 1324. DOI: 10.3390/microorganisms8091324.
Delgado-Andrade C, Seiquer I, Haro A, Castellano R, Navarro MP. 2010. Development of the Maillard reaction in foods cooked by different techniques. Intake of Maillard-derived compounds. Food Chem 122 (1): 145-153. DOI: 10.1016/j.foodchem.2010.02.031.
Deveci G, Çelik E, Cemali Ö, ?ahin TÖ, Bayaz?t AD, Özbay S, A?agündüz D, Karada? MG. 2023. Determination of caffeine amount of organic and conventional coffees. Rec Agric Food Chem 3 (1): 14-20. DOI: 10.25135/rfac.17.2305.2780.
Dimitrovski D, Velickova E, Langerholc T, Winkelhausen E. 2015. Apple juice as a medium for fermentation by the probiotic Lactobacillus plantarum PCS 26 strain. Ann Microbiol 65: 2161-2170. DOI: 10.1007/s13213-015-1056-7.
Diviš P, Po?ízka J, K?íkala J. 2019. The effect of coffee beans roasting on its chemical composition. Potravinarstvo 13: 344-350. DOI: 10.5219/1062.
Echegaray N, Yilmaz B, Sharma H, Kumar M, Pateiro M, Ozogul F, Lorenzo JM. 2023. A novel approach to Lactiplantibacillus plantarum: From probiotic properties to the omics insights. Microbiol Res 268: 127289. DOI: 10.1016/j.micres.2022.127289.
Elhalis H, Cox J, Zhao J. 2023. Coffee fermentation: Expedition from traditional to controlled process and perspectives for industrialization. Appl Food Res 3 (1): 100253. DOI: 10.1016/j.afres.2022.100253.
Fitri F, Tawali AB, Laga A, Dwyana Z. 2021a. Enzyme activity assay of lactic acid bacteria from Civet (Paradoxurus hermaphroditus) dgestive tract. Adv Anim Vet Sci 9 (10): 1649-1654. DOI: 10.17582/journal.aavs/2021/9.10.1649.1654.
Fitri F, Tawali AB, Laga A, Dwyana Z. 2021b. Identification of lactic acid bacteria from Luwak (Paradoxurus hermaphroditus) gastrointestinal tract. Intl J Agric Biol 26 (6): 717-721. DOI: 10.17957/IJAB/15.1887.
Fritsch C, Heinrich V, Vogel RF, Toelstede S. 2016. Phenolic acid degradation potential and growth behavior of lactic acid bacteria in sunflower substrates. Food Microbiol 57: 178-186. DOI: 10.1016/j.fm.2016.03.003.
Garcia R, Arriola, Rolz C. 1991. Characterization of coffee pectin. LWT 24 (2): 125-129.
Garcia-Gonzalez N, Bottacini F, Sinderen Dv, Gahan CGM, Corsetti A. 2022. Comparative genomics of Lactiplantibacillus plantarum: Insights into probiotic markers in strains isolated from the human gastrointestinal tract and fermented foods. Front Microbiol 13: 854266. DOI: 10.3389/fmicb.2022.854266.
Glatt H. 2000. Sulfotransferases in the bioactivation of xenobiotics. Chem Biol Interact 129 (1-2): 141-170. DOI: 10.1016/S0009-2797(00)00202-7.
Haskell-Ramsay CF, Jackson PA, Forster JS, Dodd FL, Bowerbank SL, Kennedy DO. 2018. The acute effects of caffeinated black coffee on cognition and mood in healthy young and older adults. Nutrients 10 (10): 1386. DOI: 10.3390/nu10101386.
He X, Hou E, Liu Y, Wen D. 2016. Altitudinal patterns and controls of plant and soil nutrient concentrations and stoichiometry in subtropical China. Sci Rep 6: 24261. DOI: 10.1038/srep24261.
Henn M, Glenn AJ, Willett WC, Martínez-Gonzàlez MA, Sun Q, Hu FB. 2023. Changes in coffee intake, added sugar and long-term weight gain-results from three large prospective US cohort studies. Am J Clin Nutr 118 (6): 1164-1171. DOI: 10.1016/j.ajcnut.2023.09.023.
Horie M, Nara K, Sugino S, Umeno A, Yoshida Y. 2017. Comparison of antioxidant activities among four kinds of Japanese traditional fermented tea. Food Sci Nutr 5 (3): 639-645. DOI: 10.1002/fsn3.442.
Ismail I, Anuar MS, Shamsudin R. 2013. Effect on the physico-chemical properties of liberica green coffee beans under ambient storage. Intl Food Res J 20 (1): 255-264.
Jeon J-S, Kim H-T, Jeong I-H, Hong S-R, Oh M-S, Yoon M-H, Shim J-H, Jeong JH, Abd El-Aty AMA. 2019. Contents of chlorogenic acids and caffeine in various coffee-related products. J Adv Res 17: 85-94. DOI: 10.1016/j.jare.2019.01.002.
Jeszka-Skowron M, Sentkowska A, Pyrzy?ska K, De Peña MP. 2016. Chlorogenic acids, caffeine content and antioxidant properties of green coffee extracts: Influence of green coffee bean preparation. Eur Food Res Technol 242: 1403-1409. DOI: 10.1007/s00217-016-2643-y.
Jung S, Gu S, Lee S-H, Jeong Y. 2021. Effect of roasting degree on the antioxidant properties of espresso and drip coffee extracted from Coffea arabica cv. Java. Appl Sci 11: 7025. DOI: 10.3390/app11157025.
Kamda AGS, Ramos CL, Fokou E, Duarte WF, Mercy A, Germain K, Dias DR, Schwan RF. 2015. In vitro determination of volatile compound development during starter culture-controlled fermentation of Cucurbitaceae cotyledons. Intl J Food Microbiol 192: 58-65. DOI: 10.1016/j.ijfoodmicro.2014.09.030.
Kamiyama M, Moon J-K, Jang HW, Shibamoto T. 2015. Role of degradation products of chlorogenic acid in the antioxidant activity of roasted coffee. J Agric Food Chem 63 (7): 1996-2005. DOI: 10.1021/jf5060563.
Kaur M, Tyagi S, Kundu N. 2018. Effect of brewing methods and time on secondary metabolites, total flavonoid and phenolic content of green and roasted coffee Coffea arabica, Coffea canephora and Monsooned malabar. Eur J Med Plants 23 (1): 1-16. DOI: 10.9734/ejmp/2018/40565.
Kitzberger CSG, Scholz MBdS, Pereira LFP, da Silva JBGD, Benassi MdT. 2016. Profile of the diterpenes, lipid and protein content of different coffee cultivars of three consecutive harvests. AIMS Agric Food 1 (3): 254-264. DOI: 10.3934/agrfood.2016.3.254.
Król K, Gantner M, Tatarak A, Hallmann E. 2020. The content of polyphenols in coffee beans as roasting, origin and storage effect. Eur Food Res Technol 246: 33-39. DOI: 10.1007/s00217-019-03388-9.
Ky C-L, Louarn J, Dussert S, Guyot B, Hamon S, Noirot M. 2001. Caffeine, trigonelline, chlorogenic acids and sucrose diversity in wild Coffea arabica L. and C. canephora, P. accessions. Food Chem 75 (2): 223-230. DOI: 10.1016/S0308-8146(01)00204-7.
Landete JM, Curiel JA, Rodríguez H, Rivas Bdl, Muñoz R. 2014. Aryl glycosidases from Lactobacillus plantarum increase antioxidant activity of phenolic compounds. J Funct Foods 7: 322-329. DOI: 10.1016/j.jff.2014.01.028.
Latief M, Maharani R, Tarigan IL, Sutrisno S. 2023. Coffee improvement by wet fermentation using Lactobacillus plantarum: Sensory studies, proximate analysis, antioxidants, and chemical compounds. J Chem Eng Environ 17 (2): 134-148. DOI: 10.23955/rkl.v18i2.32708.
Le B, Anh PTN, Yang SH. 2020. Enhancement of the anti-inflammatory effect of mustard kimchi on RAW 264.7 macrophages by the Lactobacillus plantarum frmentation-mediated generation of phenolic compound derivatives. Foods 9 (2): 181. DOI: 10.3390/foods9020181.
Li Z, Teng J, Lyu Y, Hu X, Zhao Y, Wang M. 2019. Enhanced antioxidant activity for apple juice fermented with Lactobacillus plantarum ATCC14917. Molecules 24: 51. DOI: 10.3390/molecules24010051.
Lim YH, Foo HL, Loh TC, Mohamad R, Abdullah N. 2019. Comparative studies of versatile extracellular proteolytic activities of lactic acid bacteria and their potential for extracellular amino acid productions as feed supplements. J Anim Sci Biotechnol 10: 15. DOI: 10.1186/s40104-019-0323-z.
López T, Prado-Barragán A, Nevárez-Moorillón GV, Contreras JC, Rodríguez R, Anguilar CN. 2013. Enhancement of antioxidant cacapacity of coffee pulp extracts by solid-state lactic fermentation. J Food 11 (4): 359-365. DOI: 10.1080/19476337.2013.773563.
Macit M, Eyupoglu OE, Macit C, Duman G. 2021. Formulation development of liposomal coffee extracts and investigation of their antioxidant capacities. J Drug Deliv Technol 64: 102605. DOI: 10.1016/j.jddst.2021.102605.
Maso MD, Boffetta P, Negri E, Vecchia CL, Bravi F. 2021. Caffeinated coffee consumption and health outcomes in the US population: A dose-response meta-analysis and estimation of disease cases and deaths avoided. Adv Nutr 12: 1160-1176. DOI: 10.1093/advances/nmaa177.
Mazzafera P. 2002. Degradation of caffeine by microorganisms and potential use of decaffeinated coffee husk and pulp in animal feeding. Sci Agric 59 (4): 815-821. DOI: 10.1590/S0103-90162002000400030.
Mehaya FM, Mohammad AA. 2020. Thermostability of bioactive compounds during roasting process of coffee beans. Heliyon 6 (11): e05508. DOI: 10.1016/j.heliyon.2020.e05508.
Metro D, Cernaro V, Santoro D, Papa M, Buemi M, Benvenga S, Manasseri L. 2017. Beneficial effects of oral pure caffeine on oxidative stress. J Clin Transl Endocrinol 10: 22-27. DOI: 10.1016/j.jcte.2017.10.001.
Moon S-M, Joo M-J, Lee Y-S, Kim M-G. 2021. Effects of coffee consumption on insulin resistance and sensitivity: A meta-analysis. Nutrients 13 (11): 3976. DOI: 10.3390/nu13113976.
Moreira ASP, Nunes FM, Simões C, Maciel E, Domingues P, Domingues MRM, Coimbra MA. 2017. Data on coffee composition and mass spectrometry analysis of mixtures of coffee related carbohydrates, phenolic compounds and peptides. Data Brief 13: 145-161. DOI: 10.1016/j.dib.2017.05.027.
Nasanit R, Satayawut KI. 2015. Microbiological study during coffee fermentation of Coffea arabica var. chiangmai 80 in Thailand. Kasetsart J (Nat Sci) 49: 32-41.
Neto DPdC, Pereira GVdM, Finco AMO, Letti LAJ, Silva BJGd, Vandenberghe LPS, Soccol CR. 2018. Efficient coffee beans mucilage layer removal using lactic acid fermentation in a stirred-tank bioreactor: Kinetic, metabolic and sensorial studies. Food Biosci 26: 80-87. DOI: 10.1016/j.fbio.2018.10.005.
Norazlin A, Muhammad-Adib A, Wan-Razarinah WAR, Roohinejad S, Koubaa M, Raseetha S. 2023. Antioxidant and antimicrobial activity of green and roasted coffee beans on human oral pathogens. Food Res 7 (4): 130-138. DOI: 10.26656/fr.2017.7(S4).17.
Oktavianawati I, Arimurti S, Suharjono S. 2020. The impacts of traditional fermentation method on the chemical characteristics of arabica coffee beans from Bondowoso District, East Java. J Pure App Chem Res 9 (2): 133-141. DOI: 10.21776/ub.jpacr.2020.009.02.526.
Ozolina V, Kunkulberga D, Cieslak B, Obiedzinski M. 2011. Furan derivatives dynamic in rye bread processing. Procedia Food Sci 1: 1158-1164. DOI: 10.1016/j.profoo.2011.09.173.
Palócz O, Pászti-Gere E, Gálfi P, Farkas O. 2016. Chlorogenic acid combined with Lactobacillus plantarum 2142 reduced LPS-induced intestinal inflammation and oxidative stress in IPEC-J2 cells. PLoS One 11 (11): e0166642. DOI: 10.1371/journal.pone.0166642.
Pereira GVdM, Carvalho Neto DPdC, Medeiros ABP, Soccol VT, Neto E, Woiciechowski AL, Soccol CR. 2016. Potential of lactic acid bacteria to improve the fermentation and quality of coffee during on-farm processing. Intl J Food Sci 51 (7): 1689-1695. DOI: 10.1111/ijfs.13142.
Palmieri MGS, Cruz LT, Bertges FS, Húngaro HM, Batista LR, Silva SS, Fonseca MJV, Rodarte MP, Vilela FMP, Amaral MPH. 2018. Enhancement of antioxidant properties from green coffee as promising ingredient for food and cosmetic industries. Biocatal Agric Biotechnol 16: 43-48. DOI: 10.1016/j.bcab.2018.07.011.
Rodríguez H, Curiel JA, Landete JM, de las Rivas B, López de Felipe F, Gómez-Cordovés C, Mancheño JM, Muñoz R. 2009. Food phenolics and lactic acid bacteria. Intl J Food Microbiol 132 (2-3): 79-90. DOI: 10.1016/j.ijfoodmicro.2009.03.025.
Rodríguez H, Landete JM, Rivas Bdl, Muñoz R. 2008. Metabolism of food phenolic acids by Lactobacillus plantarum CECT 748T. Food Chem 107 (4): 1393-1398.
Ryu J-Y, Kang HR, Cho SK. 2019. Changes over the fermentation period in phenolic compounds and antioxidant and anticancer activities of blueberries fermented by Lactobacillus plantarum. J Food Sci 84 (8): 2347-2356. DOI: 10.1111/1750-3841.14731.
Sasaki M, Bosman BW, Tan PS. 1995. Comparison of proteolytic activities in various lactobacilli. J Dairy Res 62 (4): 601-610. DOI: 10.1017/S0022029900031332.
Sato Y, Itagaki S, Kurokawa T, Ogura J, Kobayashi M, Hirano T, Sugawara M, Iseki K. 2011. In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. Intl J Pharm 403 (1-2): 136-138. DOI: 10.1016/j.ijpharm.2010.09.035.
Shui G, Peng LL. 2004. An improved method for the analysis of major antioxidants of Hibiscus esculentus Linn. J Chromatogr A 1048 (1): 17-24. DOI: 10.1016/j.chroma.2004.07.032.
Šilarová P, Boulekbache-Makhlouf L, Pellati F, ?eslová L. 2019. Monitoring of chlorogenic acid and antioxidant capacity of Solanum melongena L. (eggplant) under different heat and storage treatments. Antioxidants (Basel) 8 (7): 234. DOI: 10.3390/antiox8070234.
Summers RM, Mohanty SK, Gopishetty S, Subramanian M. 2015. Genetic characterization of caffeine degradation by bacteria and its potential applications. Microb Biotechnol 8 (3): 369-378. DOI: 10.1111/1751-7915.12262.
Surma S, Oparil S. 2021. Coffee and arterial hypertension. Curr Hypertens Rep 23 (7): 38. DOI: 10.1007/s11906-021-01156-3.
Swasti YR, Murkovic M. 2012. Characterization of the polymerization of furfuryl alcohol during roasting of coffee. Food Funct 3: 965-969. DOI: 10.1039/c2fo30020f.
Therdtatha P, Jareontanahun N, Chaisuwan W, Yakul K, Paemanee A, Manassa A, Moukamnerd C, Phimolsiripol Y, Sommano SR, Seesuriyachan P. 2023. Production of functional Arabica and Robusta green coffee beans: Optimization of fermentation with microbial cocktails to improve antioxidant activity and metabolomic profiles. Biocatal Agric Biotechnol 53: 102869. DOI: 10.1016/j.bcab.2023.102869.
Tolonen M, Rajaniemi S, Pihlava J-M, Johansson T, Saris PEJ, Ryhänen E-L. 2004. Formation of nisin, plant derived biomolecules and antimicrobial activity in starter culture fermentations of sauerkraut. Food Microbiol 21: 167-179. DOI: 10.1016/S0740-0020(03)00058-3.
Upadhyay R, Ramalakshmi K, Rao LJM. 2012. Microwave-assisted extraction of chlorogenic acids from green coffee beans. Food Chem 130 (1): 184-188. DOI: 10.1016/j.foodchem.2011.06.057.
Várady M, Hrušková T, Popelka P. 2020. Effect of preparation method and roasting temperature on total polyphenol content in coffee beverages. Czech J Food Sci 38 (6): 417-421. DOI: 10.17221/122/2020-CJFS.
Wang H, Pampati N, McCormick WM, Bhattacharyya L. 2016. Protein nitrogen determination by kjeldahl digestion and ion chromatography. J Pharm Sci 105 (6): 1851-1857. DOI: 10.1016/j.xphs.2016.03.039.
Wang W, Hu H, Zijlstra RT, Zheng J, Gänzle MG. 2019. Metagenomic reconstructions of gut microbial metabolism in weanling pigs. Microbiome 7 (1): 48. DOI: 10.1186/s40168-019-0662-1.
Yalç?nkaya S, K?l?ç GB. 2019. Isolation, identification and determination of technological properties of the halophilic lactic acid bacteria isolated from table olives. J Food Sci Techol 56 (4): 2027-2037. DOI: 10.1007/s13197-019-03679-9.
Yaylayan VA. 2006. Precursors, formation and determination of furan in food. J Verbrauch Lebensm 1: 5-9. DOI: 10.1007/s00003-006-0003-8.
Zhao D, Shah NP. 2016. Lactic acid bacterial fermentation modified phenolic composition in tea extracts and enhanced their antioxidant activity and cellular uptake of phenolic compounds following in vitro digestion. J Funct Foods 20: 182-194. DOI: 10.1016/j.jff.2015.10.03.