Morphological, anatomical and genetic diversity of Nanhaia speciosa (Champ. ex Benth.) J.Compton & Schrire from Northern Vietnam

##plugins.themes.bootstrap3.article.main##

PHONG XUAN ONG
CUONG BA CAO
DO TAN KHANG
TRAN GIA HUY
PHI BANG CAO
HA DUC CHU
DINH VAN NGUYEN
HONG VIET LA

Abstract

Abstract. Ong PX, Cao CB, Khang DT, Huy TG, Cao PB, Chu HD, Nguyen DV, La HV. 2024. Morphological, anatomical and genetic diversity of Nanhaia speciosa (Champ. ex Benth.) J.Compton & Schrire from Northern Vietnam. Biodiversitas 25: 1174-1184. Nanhaia speciosa (Champ. ex Benth.) J.Compton & Schrire has been considered a captivating plant species known for its remarkable attributes and contributions to ecological systems and human use. This medicinal plant originated from tropical Southeast Asia regions. However, the investigation of this species in Vietnam has been still lacking. This study comprehensively analyzed N. speciosa samples obtained in Vietnam; the morphological and anatomical characteristics of N. speciosa leaflets and flower samples collected from different regions were analyzed. As a result, the structural components of the flower were slightly similar between these samples, whereas the leaflet shape exhibited variations in the leaflet base, petiole, and leaflet apex. According to the ISSR and RAPD analysis, we demonstrated that N. speciosa found in ND genotypes (Tan Yen, Bac Giang) exhibited clearly different genetic backgrounds from CSS (Loc Binh, Lang Son) and CSD (Son Dong, Bac Giang) genotypes. Based on the clustering diagram of ISSR markers, 15 plant genotypes were classified into 2 large clusters, A and B, with genetic similarity ranging from 0.62 to 0.90. The RAPD dendrogram illustrated two main clusters, C and D, with genetic similarity ranging from 0.57 to 0.92. Therefore, this study could provide a solid foundation for identifying and characterizing N. speciosa species in Vietnam and a direction for advanced research on conservation, sustainable breeding, and exploiting pharmaceutical values.

##plugins.themes.bootstrap3.article.details##

References
Wang M, Zhang M, Yang Q, Wang Q, Ma B, Li Z, Wang Z. 2022. Metabolomic profiling of M. speciosa champ at different growth stages. Food Chemistry 376: 131941. DOI: https://doi.org/10.1016/j.foodchem.2021.131941
Tu Y, Wu C, Kang Y, Li Q, Zhu C, Li Y. 2019. Bioactivity-guided identification of flavonoids with cholinesterase and ?-amyloid peptide aggregation inhibitory effects from the seeds of Millettia pachycarpa. Bioorganic & Medicinal Chemistry Letters 29(10): 1194-1198. DOI: 10.1016/j.bmcl.2019.03.024
Bora MM, Deka R, Ahmed N, Kakati DK. 2014. Karanja (Millettia pinnata (L.) Panigrahi) seed oil as a renewable raw material for the synthesis of alkyd resin. Industrial Crops and Products 61: 106-114. DOI: https://doi.org/10.1016/j.indcrop.2014.06.048
Panda SK, Padhi L, Leyssen P, Liu M, Neyts J, Luyten W. 2017. Antimicrobial, anthelmintic, and antiviral activity of plants traditionally used for treating infectious disease in the Similipal Biosphere Reserve, Odisha, India. Frontiers in pharmacology 8: 658. DOI: https://doi.org/10.3389/fphar.2017.00658
Tu NTM, Duc NV, Luyen BTT, Huyen CTT, Jang HJ, Thu DT, Thao NP. 2019. Anti-inflammatory secondary metabolites from the stems of Millettia dielsiana Harms ex Diels. Carbohydrate research 484: 107778. DOI: 10.1016/j.carres.2019.107778
Arthan S, Yenjai C, Pornchoo C, Prawan A. 2023. Chemical constituents from the branches of Millettia brandisiana and their biological activities. Phytochemistry Letters. 53: 222-225. DOI: https://doi.org/10.1016/j.phytol.2022.12.019
Chen K, Tang H, Zheng L, Wang L, Xue L, Peng AH, Chen, LJ. 2018. Identification of compounds with cytotoxic activity from Millettia dorwardi Coll. Et. Hemsl. Phytochemistry Letters 25: 60-64. DOI: https://doi.org/10.1016/j.phytol.2018.03.004.
WFO. (2023). World Flora Online. Available: http://www.worldfloraonline.org
Uetimane JrE, Jebrane M, Terziev N, Daniel G. 2018. Comparative wood anatomy and chemical composition of Millettia mossambicensis and Millettia stuhlmannii from Mozambique. BioResources 13(2): 3335-3345. DOI: 10.15376/biores.13.2.3335-3345.
Song Z, Li S, Mattapha S. 2022. Huchimingia, a new genus segregated from Millettia (Leguminosae, Millettieae) based on morphological and molecular evidence. Phytotaxa.532: 37-56. DOI: 10.11646/phytotaxa.532.1.3.
Jooste M, Dreyer LL, Oberlander KC. 2016. The phylogenetic significance of leaf anatomical traits of southern African Oxalis. BMC Evolutionary Biology.16(1): 225. DOI: https://doi.org/10.1186/s12862-016-0792-z.
Kasiamdari RS, Aristya GR, Inayati E. 2017. Phylogenetic relationships of nine cultivars of strawberries (Fragaria spp.) based on anatomical and morphological characters. J planta tropika. 5(2): 116-126. DOI: 10.18196/pt.2017.072.116-126.
A. Silva Júnior et al., 2020. Evaluation of diversity and genetic structure as strategies for conservation of natural populations of Dalbergia nigra (Vell.) Allemão ex Benth. Cerne 26: 435-443. DOI: 10.1590/01047760202026042754.
Moghaieb RE, Abdelhadi AA, El-Sadawy HA, Allam NA, Baiome BA, Soliman MH. 2017. Molecular identification and genetic diversity among Photorhabdus and Xenorhabdus isolates. Biotech 7: 1-9. DOI: 10.1007/s13205-016-0594-4.
A. Niklas and D. Olszewska. 2021. Application of the RAPD technique to identify genetic diversity in cultivated forms of Capsicum annuum L. BioTechnologia (Pozn). 102(2): 209-223. DOI: 10.5114/bta.2021.106523.
F. A. Mortazavi Moghadam, A. Qaderi, and G.-R. Sharifi-Sirchi. 2021. Evaluation of genetic diversity of 17 populations (Lepidium sativum L.) plant collected from different regions of Iran by RAPD marker. ACS Agricultural Science & Technology. 1(6): 684-690. DOI: https://doi.org/10.1021/acsagscitech.1c00182.
Pharmawati M, Wrasiati LP, Yowani SC. 2021. ISSR and RAPD primers selection for assessing genetic diversity of Enhalusacoroides (Lf) Royle. In IOP Conference Series: Earth and Environmental Science 709(1): p. 012054 IOP. DOI: 10.1088/1755-1315/709/1/012054.
Velasco-Ramírez AP, Torres-Morán MI, Molina-Moret S, de Jesús Sánchez-González J, Santacruz-Ruvalcaba F. 2014. Efficiency of RAPD, ISSR, AFLP and ISTR markers for the detection of polymorphisms and genetic relationships in camote de cerro (Dioscorea spp.). Electronic Journal of Biotechnology 17(2): 65-71. DOI: https://doi.org/10.1016/j.ejbt.2014.01.002.
Verma KS, ul Haq S, Kachhwaha S, Kothari SL. 2017. RAPD and ISSR marker assessment of genetic diversity in Citrullus colocynthis (L.) Schrad: a unique source of germplasm highly adapted to drought and high-temperature stress. 3 Biotech 7: 1-24. DOI: 10.1007/s13205-017-0918-z.
Strock CF, Schneider HM, Lynch JP. 2022. Anatomics: High-throughput phenotyping of plant anatomy. Trends in Plant Science. DOI: https://doi.org/10.1016/j.tplants.2022.02.009.
Rogers SO, Bendich AJ. 1988. Extraction of DNA from plant tissues. In: Plant Molecular Biology Manual. Springer, Dordrecht. DOI:10.1007/978-94-009-0951-9_6.
Amiryousefi A, Hyvönen J, Poczai P. 2018. iMEC: Online marker efficiency calculator. Applications in plant sciences, 6(6), e01159. DOI: 10.1002/aps3.1159.
Chesnokov YV, Artemyeva AM. 2015. Evaluation of the measure of polymorphism information of genetic diversity. ???????????????????? ???????? 5: 571-578. DOI: 10.15389/agrobiology.2015.5.571eng.
Kim NR, Kim YI, Lee JH, Kim YD. 2013. Genetic diversity of Millettia japonica in Korea as revealed by ISSR analysis. Korean Journal of Plant Taxonomy 43(4): 267-273. DOI: https://doi.org/10.11110/kjpt.2013.43.4.267.
Vaishnav K, Tiwari V, Durgapal A, Meena B, Rana TS. 2023. Estimation of genetic diversity and population genetic structure in Gymnema sylvestre (Retz.) R. Br. ex Schult. populations using DAMD and ISSR markers. Journal of Genetic Engineering and Biotechnology 21(1): 42. DOI: 10.1186/s43141-023-00497-7.
Aminah AAM, Supriyanto S, Suryani A, Siregar IZ. 2017. Genetic diversity of Pongamia pinnata (Millettia pinnata, aka. malapari) populations in Java Island, Indonesia. Biodiversitas Journal of Biological Diversity 18(2): 677-681. DOI: https://doi.org/10.13057/biodiv/d180234.
Tilwari A, Sharma R. 2021. Random amplified polymorphic DNA and inter simple sequence repeat markers reveals genetic diversity between micro propagated, wild and field cultivated genotypes of Gloriosa superba: An endangered medicinal plant. Molecular Biology Reports 48(3): 2437-2452. DOI: 10.1007/s11033-021-06278-0.