Selection for representative environment to identify high yielding and sweetness levels of sweet potato (Ipomoea batatas L.) in Indonesia

##plugins.themes.bootstrap3.article.main##

ESO SOLIHIN
DWI ANDREAS SANTOSA
BUDI NUGROHO
PURWONO
RIJA SUDIRJA
HARIS MAULANA
NADIA NURANIYA KAMALUDDIN
AGUNG KARUNIAWAN
SYAIFUL ANWAR

Abstract

Abstract. Solihin E, Santosa DA, Nugroho B, Purwono, Sudirja R, Maulana H, Kamaluddin NN, Karuniawan A, Anwar S. 2024. Selection for representative environment to identify high yield and sweetness levels of sweet potato (Ipomoea batatas) in Indonesia. Biodiversitas 25: 386-391. Sweet potato is one of the important and commercial agricultural commodities in the world. Yield and sweetness levels are important traits that can influence consumer preferences. Environment is an important factor in the development of sweet potatoes. A suitable environment will provide high yields and good quality. The objectives of this study were to examine the significance and relevance of sweet potato yield and sweetness levels in two locations (Sumedang and Bandung District) and to select representative environments for sweet potato yield and sweetness levels. The research was conducted in Sumedang and Bandung districts on lowland paddy field and dry land. The field experiment used a factorial randomized completed block design with three repetitions. The significance and relevance of sweet potato yield and sweetness levels was analysis using T-test. Representative environments were identified by GGE biplot. The results showed that the Bandung and Sumedang environments showed significant differences in yield but not in sweetness. The Bandung paddy field is the most representative environment for yield, while the Sumedang dry field and Bandung dry field are the most representative environments for sweetness. The results of this research can be used by researchers, farmers and industrial users in the sweet potato development program, especially the yield and yield quality.

##plugins.themes.bootstrap3.article.details##

References
Al-kassab MMT. 2022. The use of one sample t-test in the real data. J Adv Math 21 (9): 134–138. DOI:10.24297/jam.v21i.9279.
Alam MK. 2021. A comprehensive review of sweet potato (Ipomoea batatas [L.] Lam): revisiting the associated health benefits. Trends Food Sci Technol 115 (6): 512–529. DOI:10.1016/j.tifs.2021.07.001.
Amien S, Maulana H, Ruswandi D, Nurjanah S. 2022. Stevia (Stevia rebaudiana B.) genotypes assessment for leaf yield stability through genotype by environment interactions, AMMI, and GGE biplot Analysis. Sabrao J Breed Gen 54 (4): 767–779. DOI:10.54910/sabrao2022.54.4.8.
Anda M, Suryani E, Widaningrum W, Nursyamsi D. 2018. Soil potassium nutrient, temperature and rainfall required to generate ‘honey taste’ of cilembu sweet potato. Indones J Agric Sci 19 (1): 33. DOI:10.21082/ijas.v19n1.2018.p33-47.
Andrade MI, Naico A, Ricardo J, Eyzaguirre R, Makunde GS, Ortiz R, Grüneberg WJ. 2016. Genotype × environment interaction and selection for drought adaptation in sweetpotato (Ipomoea batatas [L.] Lam.) in Mozambique. Euphytica 209 (1): 261–280. DOI:10.1007/s10681-016-1684-4.
Ishiguro K, Yoshinaga M, Kai Y, Maoka T, Yoshimoto M. 2010. Composition, content and antioxidative activity of the carotenoids in yellow-fleshed sweet potato (Ipomoea batatas L.). Breed Sci 60 (4): 324–329. DOI:10.1270/jsbbs.60.324.
Karuniawan A, Maulana H, Ustari D, Dewayani S, Solihin E, Solihin MA, Amien S, Arifin M. 2021. Yield stability analysis of orange - Fleshed sweet potato in Indonesia using AMMI and GGE biplot. Heliyon 7 (4): 1–10. DOI:10.1016/j.heliyon.2021.e06881.
Markos D, Mammo G, Worku W. 2022. Principal component and cluster analyses based characterization of maize fields in southern central Rift Valley of Ethiopia. Open Agric 7 (1): 504–519. DOI:10.1515/opag-2022-0105.
Maulana H, Nafi’Ah HH, Solihin E, Ruswandi D, Arifin M, Amien S, Karuniawan A. 2022. Combined stability analysis to select stable and high yielding sweet potato genotypes in multi-environmental trials in West Java, Indonesia. Agric Nat Resour 56 (4): 761–772. DOI:10.34044/J.ANRES.2022.56.4.10.
Maulana H, Solihin E, Trimo L, Hidayat S, Wijaya AA, Hariadi H, Amien S, Ruswandi D, Karuniawan A. 2023. Genotype-by-environment interactions (GEIs) and evaluate superior sweet potato (Ipomoea batatas [L.] Lam) using combined analysis and GGE biplot. Heliyon 9 (9): e20203. DOI:10.1016/j.heliyon.2023.e20203.
Mustamu YA, Tjintokohadi K, Grüneberg WJ, Karuniawan A, Ruswandi D. 2018. Selection of superior genotype of sweet-potato in Indonesia based on stability and adaptability. Chil J Agric Res 78 (4): 461–469. DOI:10.4067/S0718-58392018000400461.
Pobkhunthod N, Authapun J, Chotchutima S, Rungmekarat S, Kittipadakul P, Duangpatra J, Chaisan T. 2022. Multilocation yield trials and yield stability evaluation by GGE biplot analysis of promising large-seeded peanut lines. Front Genet 13 (8): 1–10. DOI:10.3389/fgene.2022.876763.
Preedy VR, Hunter LA, Patel VB. 2013. Nutritional quality of foods: sweet potato. Diet Qual. An Evidence-Based Approach 1(5):247–256. DOI:10.1007/978-1-4614-7339-8.
Ruswandi D, Maulana H, Karuniawan A, Ismail A, Maxiselly Y, Rafi Fauzan M, Ali Abdullah M, Yuwariah Y. 2023. Multi-traits selection of maize hybrids under sole-crop and multiple-crops with soybean. Agronomy 13 (9): 1–20. DOI:10.3390/agronomy13102448.
Solihin E, Anwar S, Santoso DA, Nugroho B, Purwono P, Sudirja R, Maulana H, Kamaluddin NN, Karuniawan A. 2023. Soil nutrient and invertase-producing bacteria relation impact on Cilembu sweet potato (Ipomoea batatas L.) growth: A study based on upland and wetland cultivation in Cilembu village Sumedang district. Kultivasi 22 (1): 85–93. DOI:10.24198/kultivasi.v22i1.45353.
Solihin MA, Sitorus SRP, Sutandi A, Widiatmaka. 2018. Discriminating land characteristics of yield and total sugar content classes of cilembu sweet potato (Ipomoea batatas L.). Agrivita 40 (1): 15–24. DOI:10.17503/agrivita.v40i1.1148.
Suárez S, Mu T, Sun H, Añón MC. 2020. Antioxidant activity, nutritional, and phenolic composition of sweet potato leaves as affected by harvesting period. Int. J. Food Prop. 23(1):178–188. DOI:10.1080/10942912.2020.1716796.
Tabu HI, Tshiabukole JPK, Kankolongo AM, Lubobo AK, Kimuni LN. 2023. Yield stability and agronomic performances of provitamin A maize (Zea mays L.) genotypes in South-East of DR Congo. Open Agric 8(1):1–12. DOI:10.1515/opag-2022-0177.
Tang CC, Ameen A, Fang BP, Liao MH, Chen JY, Huang LF, Zou H Da, Wang ZY. 2021. Nutritional composition and health benefits of leaf-vegetable sweet potato in South China. J Food Compos Anal 96(3):103714. DOI:10.1016/j.jfca.2020.103714.
Tangapo AM, Astuti DI, Aditiawati P. 2018. Dynamics and diversity of cultivable rhizospheric and endophytic bacteria during the growth stages of cilembu sweet potato (Ipomoea batatas L. var. cilembu). Agric Nat Resour 52(4):309–316. DOI:10.1016/j.anres.2018.10.003.
Utami DW, Maruapey A, Maulana H, Sinaga PH, Basith S, Karuniawan A. 2023. The sustainability index and other stability analyses for evaluating superior Fe-tolerant rice (Oryza sativa L.). Sustainability 15(16):1–22. DOI:10.3390/su151612233.
Wang S, Nie S, Zhu F. 2016. Chemical constituents and health effects of sweet potato. Food Res Int 89(8):90–116. DOI:10.1016/j.foodres.2016.08.032.
Wijaya AA, Maulana H, Wahyu G, Susanto A, Sumardi D. 2022. Grain yield stability of black soybean lines across three agroecosystems in West Java , Indonesia. Open Agric 7(8):749–763. DOI:10.1515/opag-2022-0137.
Yan W, Kang MS, Ma B, Woods S, Cornelius PL. 2007. GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Sci 47(2):643–655. DOI:10.2135/cropsci2006.06.0374.
Yan W, Tinker NA. 2006. Biplot analysis of multi-environment trial data?: Principles and applications. Can J Plant Sci 6(9):623–645. DOI: 10.4141/P05-169.

Most read articles by the same author(s)

1 2 > >>