Wood decomposers on six community timber species in two different locations

##plugins.themes.bootstrap3.article.main##

MARLINA WIDYA NURHADI
ARINANA ARINANA
ANINDYA INTAN RAHMAWATI
ELIS NINA HERLIYANA
RIKI ANDIKA
SETIAWAN KHOIRUL HIMMI

Abstract

Abstract. Nurhadi MW, Arinana A, Rahmawati AI, Herliyana EN, Andika R, Himmi SK. 2023. Wood decomposers on six community timber species in two different locations. Biodiversitas 24: 6629-6640. Wood has a close relationship with termites and fungi as decomposers. Decomposers are important as dead organic matter is broken down into elements and returned to the soil. This study aims to analyze the amount of wood attacked by termites and fungi on six types of community timber during six months of testing at two different locations, analyze the degree of damage, and identify the species of termites and fungi that attack them. The research was conducted in two locations: the Arboretum of the Faculty of Forestry and Environment of IPB and a residential area in Bogor Asri, Cibinong Sub-district, Bogor District. The wood tested were Acacia mangium, Falcataria moluccana, Anthocephalus cadamba, Maesopsis eminii, Pinus merkusii, and Hevea brasiliensis. Tests were conducted based on ASTM D 1758-06. Infested wood increased with the time tested, and infestation was higher in the arboretum (75%) than in the residential area (39.4%). The highest level of wood damage in the arboretum was Hevea brasiliensis (35.4 g); in residential, it was Pinus merkusii (18.9 g). The subterranean termite types found during the six months of testing are Macrotermes sp., Microtermes sp., Schedorhinotermes sp., and Odontotermes sp. The weathering fungi types found during the six months of testing were  Aspergillus sp., Mucor sp., Trichoderma sp., Gliocladium sp., Mycelia sterilia, and red fungus. Soil type, moisture, and ambient temperature also strongly favored the development of decomposer life found in the two research sites.

##plugins.themes.bootstrap3.article.details##

References
[ASTM] American Society for Testing and Material. 2006. Standard Test Method of Evaluating Wood Preservatives by Field Test with Stakes. ASTM D 1758-06. West Conshohocken Z: ASTM International.
[BALITTANAH] Balai Penelitian Tanah. 2009. Analisis Kimia Tanah, Tanaman, Air dan Pupuk. Bogor: Balai Penelitian Tanah.
[BS] British Standard Institution. 1957. Methods of Testing Small Clear Specimens. BS-373:1957. London: British Standard House.
Abubacker MN, Prince M. 2021. Degradation efficacy of Pinus radiata don needle leaf, twig and bark by wood degrading fungi in forest ecosystem. Bioremediation and Green Technologies: Sustainable Approaches to Mitigate Environmental Impacts. 87-101. DOI: 10.1007/978-3-030-64122-1_7.
Alamu OT, Ayandokun AE, Ete JA, George-Onaho JA. Agboola IS. 2021. Seasonal diversity and abundance of subterranean termite species in eucalyptus plantations in Afaka, Nigeria. Journal of Forestry Research and Management. 18: 58-68.
Anyango JJ, Bautze D, Fiaboe KK et al 2020. The impact of conventional and organic farming on soil biodiversity conservation: a case study on termites in the long-term farming systems comparison trials in Kenya. BMC ecology. 20: 1-14. DOI: 10.1186/s12898-020-00282-x.
Arif A, Muin M, Putri G, Hidayah MT. 2021. Termites (Insecta: Isoptera) diversity in forest conseccion areas of PT Inhutani I, Indonesia. IOP Conference Series: Earth and Environmental Science. 86: 12-129. DOI: 10.1088/1755-1315/886/1/012129.
Arinana A, Aldina R, Nandika D, Rauf A, Harahap IS, Sumertajaya IM, Bahtiar ET. 2016; Termite Diversity in Urban Landscape, South Jakarta, Indonesia. DOI: 10.3390/insects7020020
Arinana, Fannani AR, Nandika D, Haneda NF. 2020b. Field test on the palatability of the subterranean termites to pine wood with various treatments. Biodiversitas 21: 5763-5771. DOI: 10.13057/biodiv/d211237.
Arinana, Hutapea FE, Nandika D, Haneda NF. 2020a. Field evaluation of subterranean termite palatability on treated pine wood in Alam Sinarsari Residence, West Java. IOP Conference Series: Materials Science and Engineering 935: 1-13. DOI: 10.1088/1757-899X/935/1/012012.
Arinana, Rahman M, Silaban REG, Himmi SK, Nandika D. 2022. Preference of subterranean termites among community timber species in Bogor, Indonesia. J. Korean Wood Sci. 50: 458-474. DOI: 10.5658/WOOD.2022.50.6.458.
Arinana, Rauf A, Nandika D, Harahap IS, Sumertajaya IM. 2019. Model prediksi risiko kelas serangan rayap tanah di Provinsi DKI Jakarta berbasis spesies, tanah, dan iklim. Prosiding Seminar Nasional PEI Cabang Bandung, Jatinangor: 170-178.
Carbungco ES, Pedroche NB, Panes VA, De la Cruz TE. 2015. Identification and characterization of endophytic fungi associated with the leaves of Moringa oleifera L am. In: I Int Symp Moringa 1158: 373-380. DOI: 10.17660/ActaHortic.2017.1158.42
Chen H, Mothapo NV, Shi W. 2014. Soil Moisture and pH Control Relative Contributions of Fungi and Bacteria to N2O Production. Microb ecol. 69: 180-191. DOI: 10.1007/s00248-014-0488-0.
Coleine C, Selbmann L, Guirado E, Singh BK, Delgado-Baquerizo M. 2022. Humidity and pH boost occurrence of Onygenales fungi on soil at global scale. Soil Biol Biochem. 167: 1-6. DOI: 10.1016/j.soilbio.2022.108617.
Constantino R. 2021. Sampling Methods for Termites (Insecta: Blattaria: Isoptera). in Santos and Fernandez 2021. Measuring Arthropod Biodiversity: A Handbook of Sampling Methods. 241–255. Springer. Cham, Switzerland. DOI: 10.1007/978-3-030-53226-0_10.
Cookson LJ, Trajstman AC. 2002. Termite Survey and Hazard Mapping. CSIRO FFP Technical Report Number 137. Victoria: CSIRO Forestry and Forest Products. DOI: 10.25919/5be1d6a650bd3
Enagbonma BJ, Babalola OO. 2020. Unveiling plant-beneficial function as seen in bacteria genes from termite mound soil. J Soil Sci Plant Nutr. 20: 421-430. DOI: 10.1007/s42729-019-00124-w.
Ge N, Wei X, Wang X, et al. 2019. Soil texture determines the distribution of aggregate-associated carbon, nitrogen and phosphorous under two contrasting land use types in the Loess Plateau. Catena. 172: 148-157 DOI: 10.1016/j.catena.2018.08.021.
Griffiths HM, Ashton LA, Parr CL, Eggleton P. 2021. The impact of invertebrate decomposers on plants and soil. New Phytol: 231. 2142-2149. DOI: 10.1111/nph.17553.
Hakim I, Dwiprabowo H, Effendi R. 2009. Kajian peredaran kayu rakyat di wilayah Jawa bagian barat. Jurnal Penelitian Sosial dan Ekonomi Kehutanan. 6: 15-37. DOI: 10.20886/jpsek.2009.6.1.15-37.
Heriza S, Buchori D, Harahap IS, Maryana N. 2021. Response of termite communities to natural forest conversion. Biodiversitas. 22: 5092-5096. DOI: 10.13057/biodiv/d221147.
Heriza S, Buchori D, Harahap IS, Maryana N. 2022. Decomposition of wood by termites in different types of land use. Jurnal Perlindungan Tanaman Indonesia 26: 21-27. DOI: 10.22146/jpti.69322.
Hidayah BN, Herawati N, Aisah AR, Utami NR. 2021. Diversity of fungi associated with rhizosphere of healthy and diseased garlic crop. Biodiversitas. 22. DOI: 10.13057/biodiv/d220346.
Indrayani Y, Setyawati D, Mariani Y, et al. 2021 Diversity of termite species at various altitudes in the secondary forest, West Kalimantan, Indonesia. IOP Conference Series: Earth and Environmental Science. 959: 12-14. DOI: 10.1088/1755-1315/959/1/012014.
Issoufou AA, Soumana I, Maman G, Konate S, Mahamane A. 2019. Effects of termites growth on litter decomposition: a modeling approach. International Journal of Recycling of Organic Waste in Agriculture. 8: 415-421. DOI: 10.1007/s40093-019-00314-7
Jacobsen RM, Kauserud H, Sverdrup-Thygeson A, Bjorbækmo MM, Birkemoe T. 2017. Wood-inhabiting insects can function as targeted vectors for decomposer fungi. Fungal Ecol. 29: 76-84. DOI: 10.1016/j.funeco.2017.06.006.
Jalaludin N, Rahim F, Yaakop S. 2018. Termite associated to oil palm stands in three types of soils in Ladang Endau Rompin, Pahang, Malaysia. Sains Malaysiana 47: 1961-1967. DOI: 10.17576/jsm-2018-4709-03.
Khan MA, Ahmad W. 2018. Termites and Sustainable Management. Springer, Cham, Switzerland. DOI: 10.1007/978-3-319-72110-1
Li T, Cui L, Song X, et al. 2022. Wood decay fungi: an analysis of worldwide research. J Soils Sediments. 22: 1688-1702. DOI: 10.1007/s11368-022-03225-9.
Maršalkien? N, Nikolajeva V, Se?kovs M, ?esonien? L. 2022. Fungi present in the organic and mineral layers of six broad-leaved tree plantations as assessed by the plate dilution method. Diversity 15: 8. DOI: 10.3390/d15010008.
Martin AJ, Lopez R. 2023. Biological deterioration and natural durability of wood in Europe. Forest. 14: 283. DOI: 10.3390/f14020283.
Mujinya BB, Mees F, Erens H et al. 2013 Clay composition and properties in termite mounds of the Lubumbashi area, D.R. Congo. Geoderma 192: 304-315. DOI: 10.1016/j.geoderma.2012.08.010.
Mustafa HK, Anwer SS, Zrary TJ. 2023. Influence of pH, agitation speed, and temperature on growth of fungi. Kuwait Journal of Science. DOI: 10.1016/j.kjs.2023.02.036.
Nandika D, Rismayadi Y, Diba F. 2015. Rayap: Biologi dan Pengendaliannya Edisi 2. Surakarta: Muhammadiyah University Press.
Neoh KB, Muhammad A, Itoh M, Kozan O. 2023. Termite: Friend or Foe? Conservation Values of Termites in Tropical Peat Systems. Vulnerability and Transformation of Indonesian Peatlands. 105. DOI: 10.1007/978-981-99-0906-3_6.
Netshifhefhe SR, Kunjeku EC, Duncan FD. 2020. Effects of different land use patterns on seasonal termite species diversity within the Vhembe district of the Limpopo province, South Africa. Int j Trop Insect Sci. 40: 293-307. DOI: 10.1007/s42690-019-00081-y.
Oh JJ, Choi YS, Kim MJ, Kim GH. 2023 Natural durability of some hardwoods imported into Korea for deck boards against decay fungi and subterranean termite in accelerated laboratory tests. Maderas. Ciencia y tecnología. 25. DOI: 10.4067/S0718-221X2023000100437.
Pratiknyo H, Setyowati EA. 2020. Short Communication: The diversity of termites along the altitudinal gradient in a Karst Area of Southern Gombong, Central Java, Indonesia. Biodiversitas. 21. DOI: 10.13057/biodiv/d210456.
Ruffinatto F, and Crivellaro A. 2019. Atlas of Macroscopic Wood Identification. Springer. Cham, Switzerland. DOI: 10.1007/978-3-030-23566-6.
Srinivas RP, Nigam A, Aruna J, Silva WCD, Chikkaswanny BK. 2015. An investigation of biodiversity of endophytic fungi associated with some medical plants. IntlJ Adv Res Eng Appl Sci4(2): 27-44.
Pratiknyo H, Haryanto T, Apriyanto DN. 2020. Diversity, density and distribution of termites in housing complexes in Purwokerto, Central Java, Indonesia. Biodiversitas. 21. DOI: 10.13057/biodiv/d211233.
Pratiwi V, Oktarina H, Sriwati R. 2021. The potential of Trichoderma spp. and Pseudomonas auregenosa as patchouli waste decomposer. IOP Conference Series: Earth and Environmental Science. 667: 12-19. DOI: 10.1088/1755-1315/667/1/012019.
Samanta I. 2015. Veterinary Mycology. Springer, New Delhi. DOI: 10.1007/978-81-322-2280-4
Siddiquee S. 2017. Practical Handbook of the Biology and Molecular Diversity of Trichoderma Species from Tropical Regions. Springer. Cham, Switzerland. DOI: 10.1007/978-3-319-64946-7.
Subekti N. 2012. Biodeterioration of pine wood (Pinus merkusii) by soil termites Macrotermes gilvus Hagen (Blattodea: Termitidae). Bioteknologi 9: 57- 65. DOI: 10.13057/biotek/c090204.
Subekti N, Milanio RR. 2023. Termite diversity and abundance based on altitude in Mount Ungaran, Central Java, Indonesia. Biodiversitas. 24. DOI: 10.13057/biodiv/d240626.
Velasco-Rodriguez Ó, Fil M, Heggeset TM et al. 2022. Characterization of microbial diversity in decayed wood from a Spanish Forest: An environmental source of industrially relevant microorganisms. Microorganisms 10: 1249. DOI: 10.3390/microorganisms10061249.
Woon JS, Boyle MJW, Ewers RM, Chung A, Eggleton P. 2019. Termite environmental tolerances are more linked to desiccation than temperature in modified tropical forests. Insectes sociaux. 66: 57-64. DOI: 10.1007/s00040-018-0664-1.
Xia Q, Rufty T, Shi W. 2020. Soil microbial diversity and composition: Links to soil texture and associated properties. Soil Bio Biochem. 149: 107–953. DOI: 10.1016/j.soilbio.2020.107953.
Yanti I, Kusma YR. 2021. Effect of water content in soil on C-organic levels and soil acidity (pH). Indonesian Journal of Chemical Research 6(2): 92-97
Zin NA, Badaluddin NA. 2020. Biological functions of Trichoderma spp. for agriculture applications. Annals of Agricultural Sciences. 65: 168-178. DOI: 10.1016/j.aoas.2020.09.003.

Most read articles by the same author(s)