Detection of Plasmodium in small ruminants in Yogyakarta, Indonesia, using a nested PCR assay

##plugins.themes.bootstrap3.article.main##

DWI PRIYOWIDODO
APRIL HARI WARDHANA
DYAH HARYUNINGTYAS SAWITRI
JOKO PRASTOWO
WISNU NURCAHYO
AAN AWALUDIN
YUDHI RATNA NUGRAHENI

Abstract

Abstract. Priyowidodo D, Wardhana AH, Sawitri DH, Prastowo J, Nurcahyo W, Awaludin A, Nugraheni YR. 2023. Detection of Plasmodium in small ruminants in Yogyakarta, Indonesia, using a nested PCR assay. Biodiversitas 24: 6722-6726. Limited investigation of natural malaria infection in small ruminants in Yogyakarta needs to be explored. Plasmodium sp., as the causative agent of malaria, has been proven to infect ungulates, including small ruminants. This study aimed to investigate the presence of natural malaria infection in goats and sheep in Yogyakarta. A total of 303 blood samples were collected from goats and sheep in this study from four selected areas by a cross-sectional study. A microscopic examination detected the Plasmodium stage in a thin blood smear. Nested Polymerase Chain Reaction (PCR) performed molecular detection, targeting cytochrome b (cytb) as a gene target. It was found that no Plasmodium stage was detected in thin blood smears. However, three out of 70 blood samples from Girimulyo were Plasmodium-positive based on nested PCR assay. The results highlight that molecular assay by nested PCR is more sensitive than microscopic examination. Molecular analysis revealed natural Plasmodium infections in Ettawa cross-bread goats, with a proportion of 0.0429 (95% CI: 0.0089-0.1202). There was no statistical difference between sex and natural malaria infection in goats. This finding suggests that molecular analysis is necessary to detect natural malaria infection with extremely low parasitemia levels. Therefore, further study with larger sample sizes and broader geographical representation is needed to fully understand these malaria infections in goats and sheep.

##plugins.themes.bootstrap3.article.details##

References
Asada M, Takeda M, Tomas WM, Pellegrin A, de Oliveira CHS, Barbosa JD, da Silveira JAG, Braga EM, Kaneko O. 2018. Close relationship of Plasmodium sequences detected from South American pampas deer (Ozotoceros bezoarticus) to Plasmodium spp. in North American white-tailed deer. Int J Parasitol Parasites Wildl 7 (1): 44-47. DOI: 10.1016/j.ijppaw.2018.01.001
Aseme T, Robert B, Amuzie C, Akani G. 2020. Haematological Parameters and Haemoparasites of West African Dwarf Goats Sold at Trans-Amadi and Rumuokoro Abattoirs, Port Harcourt, Nigeria. Current Trends in Veterinary and Dairy Research 1 (1): 14-20.
Boundenga L, Makanga B, Ollomo B, Gilabert A, Rougeron V, Mve-Ondo B, Arnathau C, Durand P, Moukodoum ND, Okouga AP, Delicat-Loembet L, Yacka-Mouele L, Rahola N, Leroy E, Ba CT, Renaud F, Prugnolle F, Paupy C. 2016. Haemosporidian Parasites of Antelopes and Other Vertebrates from Gabon, Central Africa. PLoS One 11 (2), e0148958. DOI: 10.1371/journal.pone.0148958
Castro MC. 2017. Malaria Transmission and Prospects for Malaria Eradication: The Role of the Environment. Cold Spring Harb Perspect Med 7(10). DOI: 10.1101/cshperspect.a025601
CDC. 2022. Malaria. U.S. Department of Health and Human Services. Retrieved March 2023 from https://www.cdc.gov/malaria/about/activities.html
Ferrari G, Ntuku HMT, Ross A, Schmidlin S, Kalemwa DM, Tshefu AK, Lengeler C. 2016. Identifying risk factors for Plasmodium infection and anaemia in Kinshasa, Democratic Republic of Congo. Malaria Journal 15(1): 362. DOI: 10.1186/s12936-016-1412-5
Garnham PCC. 1966. Malaria Parasites and Other Haemosporidia. Blackwell Scientific, Michigan
Guggisberg AM, Sayler KA, Wisely SM, John ARO. 2018. Natural history of Plasmodium odocoilei malaria infection in farmed white?tailed deer. mSphere 3 (2): e00067?18. DOI: 10.1128/msphere.00067-18
Haanshuus CG, Mohn SC, Mørch K, Langeland N, Blomberg B, Hanevik K. 2013. A novel, single-amplification PCR targeting mitochondrial genome highly sensitive and specific in diagnosing malaria among returned travellers in Bergen, Norway. Malaria Journal 12 (1): 26. DOI: 10.1186/1475-2875-12-26
Kaewthamasorn M, Takeda M, Saiwichai T, Gitaka JN, Tiawsirisup S, Imasato Y, Mossaad E, Sarani A, Kaewlamun W, Channumsin M, Chaiworakul S, Katepongpun W, Teeveerapunya S, Panthong J, Mureithi DK, Bawm S, Htun LL, Win MM, Ismail AA, Ibrahim AA, Suganuma K, Hakimi H, Nakao R, Katakura K, Asada M, Kaneko O. 2018. Genetic homogeneity of goat malaria parasites in Asia and Africa suggests their expansion with domestic goat host. Scientific Reports 8 (1): 5827. DOI: 10.1038/s41598-018-24048-0
Langi ET, Bernadus JB, Wahongan GJ. 2016. Perbandingan deteksi Plasmodium falciparum dengan metode pemeriksaan mikroskopik dan teknik real-time polymerase chain reaction. eBiomedik: 4 (1).
Martinsen ES, McInerney N, Brightman H, Ferebee K, Walsh T, McShea WJ, Forrester TD, Ware L, Joyner PH, Perkins SL, Latch EK, Yabsley MJ, Schall JJ, Fleischer RC. 2016. Hidden in plain sight: Cryptic and endemic malaria parasites in North American white-tailed deer (Odocoileus virginianus). Science Advances 2 (2): e1501486. DOI: 10.1126/sciadv.1501486
Mello F, Paes S. 1923. Sur une plasmodiae du sang des chèvres. Cr. séanc. Soc. Biol. 88: 829-830.
Nguyen AHL, Pattaradilokrat S, Kaewlamun W, Kaneko O, Asada M, Kaewthamasorn M. 2023. Myzomyia and Pyretophorus series of Anopheles mosquitoes acting as probable vectors of the goat malaria parasite Plasmodium caprae in Thailand. Scientific Reports: 13 (1): 145. DOI: 10.1038/s41598-022-26833-4
Nguyen AHL, Tiawsirisup S, Kaewthamasorn M. 2020. Low level of genetic diversity and high occurrence of vector-borne protozoa in water buffaloes in Thailand based on 18S ribosomal RNA and mitochondrial cytochrome b genes. Infect Genet Evol, 82: 104304. DOI: 10.1016/j.meegid.2020.104304
Opara M, Nwokedi C. 2011. Occurrence of haemoparasites among small ruminants reared under traditional husbandry system in Owerri, Southeast Nigeria. Animal Health and Production, 59: 393-398.
Perkins SL, Schall JJ. 2002. A molecular phylogeny of malarial parasites recovered from cytochrome b gene sequences. J Parasitol 88 (5): 972-978. DOI: 10.1645/0022-3395(2002)088[0972: Ampomp]2.0.Co;2
Sumanto D, Hadisaputro S, Sakundarno AM, Susanti S, Sayono. 2021. Human-Plasmodium like in domestic-goat blood in malaria endemic areas in Purworejo Indonesia. Journal of Communicable Diseases 53 (4): 148-152. DOI: 10.24321/0019.5138.202185
Templeton TJ, Asada M, Jiratanh M, Ishikawa SA, Tiawsirisup S, Sivakumar T, Namangala B, Takeda M, Mohkaew K, Ngamjituea S, Inoue N, Sugimoto C, Inagaki Y, Suzuki Y, Yokoyama N, Kaewthamasorn M, Kaneko O. 2016. Ungulate malaria parasites. Scientific Reports 6: 23230. DOI: 10.1038/srep23230
Tu HLC, Nugraheni YR, Tiawsirisup S, Saiwichai T, Thiptara A, Kaewthamasorn M. 2021. Development of a novel multiplex PCR assay for the detection and differentiation of Plasmodium caprae from Theileria luwenshuni and Babesia spp. in goats. Acta Tropica 220: 105957. DOI: 10.1016/j.actatropica.2021.105957
WHO. 2015. Microscopy for the detection, identification and quantification of malaria parasites on stained thick and thin blood films in research settings. Retrieved March 12, 2023, from www.who.int/tdr.

Most read articles by the same author(s)