Fermentation of rain tree (Samanea saman) seed meal using mixed microbes to improve its nutritional quality

##plugins.themes.bootstrap3.article.main##

ASNI ANWAR
ZAINUDDIN
MUHAMMAD IQBAL DJAWAD
SITI ASLAMYAH

Abstract

Abstract. Anwar A, Zainuddin, Djawad MI, Aslamyah S. 2023. Fermentation of rain tree (Samanea saman) seed meal using mixed microbes to improve its nutritional quality. Biodiversitas 24: 5863-5872. Rain tree (Samanea saman) seed meal is a source of protein; however, its utilization remains limited due to the presence of anti-nutrients, such as tannins acting as protein inhibitors, high crude fiber content, dissolved protein, and low digestibility of dry and organic matter. Fermentation using mixed microbes potentially enhances the nutritional value of rain tree seed meal. This study aims to improve the nutritional quality and reduce anti-nutritional factors in rain tree seed flour using mixed microbes at various doses and incubation times in vitro. Microbes utilized in this study include Bacillus sp., Saccharomyces cerevisiae, and Rhizopus sp. The study was designed using a Factorial Completely Randomized Design, using two factors, i.e., 3 doses of mixed microbes (0, 1.5, 3, and 4.5 mL/100 g rain tree seed meal) and 3 different incubation times (42, 72 and 96 hours). There were significant interactions between the microbe doses and incubation times. The treatment of 4.5 mL of mixed microbes/100 g rain tree seed meal and a 72 hours incubation time reduced substantially crude fiber content (59.60%) and crude fat (73.20%), coupled with an increase in crude protein content (11.62%), NFE (6.52%), dry matter digestibility (DMD) (36.78%), organic matter digestibility (OMD) (50.42%), and dissolved protein content (20.27%). Tannin content reduced significantly (37.72%) at the treatment of 4.5 mL of mixed microbes/100g rain tree seed meal with an incubation time of 96 hours. These findings suggest that rain tree seed meal, subjected to fermentation for 72 hours or more, improves nutritional quality, DMD, and OMD.

##plugins.themes.bootstrap3.article.details##

References
Abu-Alya IS, Alharbi YM, Fathalla SI, Zahran IS, Shousha SM, Abdel-Rahman HA. 2021. Effect of partial soybean replacement by shrimp by-products on the productive and economic performances in African catfish (Clarias lazera) diets. Fishes. 6(4). Doi : 10.3390/fishes6040084
Adelina A, Feliatra F, Siregar YI, Suharman I. 2020. Utilization of feather meal fermented Bacillus subtilis to replace fish meal in the diet of silver pompano, Trachinotus blochii (Lacepede, 1801). AACL Bioflux. 13(1):100–108.
Alahmad K, Wenshui X, Jiang Q, Xu Y. 2022. Effect of the Degree of Hydrolysis on Nutritional, Functional, and Morphological Characteristics of Protein Hydrolysate Produced from Bighead Carp (Hypophthalmichthys nobilis) Using Ficin Enzyme. Foods. 11(9). DOI : 10.3390/foods11091320
Aslamyah S, Fujaya Y, Rukminasari N, Hidayani AA, Darwis M, Achdiat M. 2022. Utilization of Feed and Growth Performance of Mud Crabs: The Effect of Herbal Extracts as Functional Feed Additives. Isr J Aquac - Bamidgeh. 74. DOI : 10.46989/001C.32548
Aslamyah S, Karim MY, Badraeni. 2017. Fermentation of seaweed flour with various fermenters to improve the quality of fish feed ingredients. J Akuakultur Indones. 16(1):8. DOI :10.19027/jai.16.1.8-14
Aslamyah S, Karim MY, Badraeni ,. 2017a. Fermentation of seaweed flour with various fermenters to improve the quality of fish feed ingredients. J Akuakultur Indones. 16(1):8. DOI : 10.19027/jai.16.1.8-14
Aslamyah S, Karim MY, Badraeni ,. 2017b. Fermentation of seaweed flour with various fermenters to improve the quality of fish feed ingredients. J Akuakultur Indones. 16(1):8. DOI : 10.19027/jai.16.1.8-14
Assosiation of Analytical Chemists. 2010. Official Methods of Analysis of AOAC International 18th eds W Horwitz and G W Latimer (Gaithersburg. Maryland: AOAC International). Gaithersburg Maryl AOAC Int.
Baena A, Orjuela A, Rakshit SK, Clark JH. 2022. Enzymatic hydrolysis of waste fats, oils and greases (FOGs): Status, prospective, and process intensification alternatives. Chem Eng Process - Process Intensif. 175. DOI : 10.1016/j.cep.2022.108930
Christensen LF, García-Béjar B, Bang-Berthelsen CH, Hansen EB. 2022. Extracellular microbial proteases with specificity for plant proteins in food fermentation. Int J Food Microbiol. 381. DOI : 10.1016/j.ijfoodmicro.2022.109889
Cruz-Casas DE, Aguilar CN, Ascacio-Valdés JA, Rodríguez-Herrera R, Chávez-González ML, Flores-Gallegos AC. 2021. Enzymatic hydrolysis and microbial fermentation: The most favorable biotechnological methods for the release of bioactive peptides. Food Chem Mol Sci. 3. DOI : 10.1016/j.fochms.2021.100047
Dawood MAO, Koshio S. 2020. Application of fermentation strategy in aquafeed for sustainable aquaculture. Rev Aquac. 12(2):987–1002. DOI : 10.1111/raq.12368
Dinakarkumar Y, Krishnamoorthy S, Margavelu G, Ramakrishnan G, Chandran M. 2022. Production and characterization of fish protein hydrolysate: Effective utilization of trawl by-catch. Food Chem Adv. 1. DOI : 10.1016/j.focha.2022.100138
Fairbairn S, Engelbrecht L, Setati ME, du Toit M, Bauer FF, Divol B, Rossouw D. 2021. Combinatorial analysis of population dynamics, metabolite levels and malolactic fermentation in Saccharomyces cerevisiae/ Lachancea thermotolerans mixed fermentations. Food Microbiol. 96. DOI : 10.1016/j.fm.2020.103712
Fang X, Chen Z, Wu W, Chen H, Nie S, Gao H. 2022. Effects of different protease treatment on protein degradation and flavor components of Lentinus edodes. eFood. 3(6). DOI : 10.1002/efd2.41
Fattah AH, Syamsu JA, Natsir A, Garantjang S. 2020. In vitro digestibility of fermented rice straw combined with different levels of green concentrate. IOP Conf Ser Earth Environ Sci. 492(1). DOI : 10.1088/1755-1315/492/1/012026
Fernandes H, Moyano F, Castro C, Salgado J, Martínez F, Aznar M, Fernandes N, Ferreira P, Gonçalves M, Belo I, et al. 2021. Solid-state fermented brewer’s spent grain enzymatic extract increases in vitro and in vivo feed digestibility in European seabass. Sci Rep. 11(1). DOI : 10.1038/s41598-021-02393-x
Graf FMR, Buchhaupt M. 2022. Comparative Investigations on Different ?-Glucosidase Surrogate Substrates. Fermentation. 8(2):1–9. DOI : 10.3390/fermentation8020083
Gronchi N, De Bernardini N, Cripwell RA, Treu L, Campanaro S, Basaglia M, Foulquié-Moreno MR, Thevelein JM, Van Zyl WH, Favaro L, Casella S. 2022. Natural Saccharomyces cerevisiae Strain Reveals Peculiar Genomic Traits for Starch-to-Bioethanol Production: the Design of an Amylolytic Consolidated Bioprocessing Yeast. Front Microbiol. 12. DOI : 10.3389/fmicb.2021.768562
Harahap, Hasnudi, N. Ginting. 2022. Effect of Fermentation Duration and Dosage of Eco Enzyme Use on Nutrient Content of Kepok Banana Stem (Musa Paradisiaca L.). J Peternak Integr. 9(3):58–64. DOI : 10.32734/jpi.v9i3.7579
Harlina H, Hamdillah A, Kamaruddin K, Aslamyah S. 2021. Digestibility of fermented copra meal for fish as plant protein source in the Saline tilapia (Oreochromis niloticus) Seeds. In: IOP Conf Ser Earth Environ Sci. Vol. 763. [place unknown]: IOP Publishing Ltd. DOI : 10.1088/1755-1315/763/1/012033
Hassan, Manyelo TG, Selaledi L, Mabelebele M. 2020. The effects of tannins in monogastric animals with special reference to alternative feed ingredients. Molecules. 25(20):1–17. DOI : 10.3390/molecules25204680
Hawar SN. 2022. Extracellular Enzyme of Endophytic Fungi Isolated from Ziziphus spina Leaves as Medicinal Plant. Int J Biomater. 2022. DOI: 10.1155/2022/2135927
Hendarto E, Bahrun B, Hidayat N, Istiqomah D, Puspita Candrasari D. 2022. Productivity and Nutrient Digestibility of Sorghum Fodder at Different Urine Fertilizers Levels and Harvest Times. Anim Prod. 24(1):23–30. DOI : 10.20884/1.jap.2022.24.1.94
Hernaman I, Ayuningsih B, Ramdani D, Islami RZ. 2022. The Improvement of Maize Cobs Quality through Soaking in Firewood Ash Filtrate and Its Impact on In Vitro Rumen Fermentability and Digestibility. 12(1).
Hernaman I, Rochana A, Andayaningsih P, Suryani Y, Ramdhani MA. 2015. Evaluation of in Vitro Digestibility of Dried Matter and Organic Matter of Solid Waste of Bioethanol Fermentation from Cassava by Trichoderma Viride and Saccharomyces Cerevisiae. J Asian Sci Res. 5(11):513–521. DOI : 10.18488/journal.2/2015.5.11/2.11.513.521
Hertrampf. J. 2006. Quick method for crude fibre estimation. Feed Technol. 10(2):29–31.
Jannathulla R, Dayal JS, Vasanthakumar D, Ambasankar K, Muralidhar M. 2017. Effect of fermentation methods on amino acids, fiber fractions and anti-nutritional factors in different plant protein sources and essential amino acid index for Penaeus vannamei Boone, 1931. Indian J Fish. 64(2):40–47. DOI : 10.21077/ijf.2017.64.2.60341-07
Jaworska G, Szarek N, Hanus P. 2022. Effect of Celeriac Pulp Maceration by Rhizopus sp. Pectinase on Juice Quality. Molecules. 27(23). DOI : 10.3390/molecules27238610
Kearl. 1982. Nutrient Requirements of Ruminants in Developing Countries. [place unknown].
Kim IS, Kim CH, Yang WS. 2021. Physiologically active molecules and functional properties of soybeans in human health—a current perspective. Int J Mol Sci. 22(8). DOI : 10.3390/ijms22084054
Liñan-Vidriales MA, Peña-Rodríguez A, Tovar-Ramírez D, Elizondo-González R, Barajas-Sandoval DR, Ponce-Gracía EI, Rodríguez-Jaramillo C, Balcázar JL, Quiroz-Guzmán E. 2021. Effect of rice bran fermented with Bacillus and Lysinibacillus species on dynamic microbial activity of Pacific white shrimp (Penaeus vannamei). Aquaculture. 531. DOI : 10.1016/j.aquaculture.2020.735958
Lowry, Nj R, Al F, Rj R. 1951. Protein measurement with the Folin phenol reagent. J Biol Chem [Internet]. 1(193):265–275. https://pubmed.ncbi.nlm.nih.gov/14907713/.DOI : 10.1016/s0021-9258(19)52451-6
Lunagariya PM, Gupta RS, Parnerkar S. 2017. In vitro evaluation of total mixed ration supplemented with exogenous fibrolytic enzymes for crossbred cows. Vet World. 10(3):281–285. DOI : 10.14202/vetworld.2017.281-285
Mahendra EDP, Luh Ari Yusasrini N, Desak Putu Kartika Pratiwi. 2019. The Effect of Processing Method on Tanin Content and Functional Properties Proso Millet (Panicum Miliaceum) Flour. Ilmu dan Teknol Pangan. 8(4):354–367. DOI : 10.24843/itepa.2019.v08.i04.p02
Majchrzak W, Motyl I, ?migielski K. 2022. Biological and Cosmetical Importance of Fermented Raw Materials: An Overview. Molecules. 27(15). DOI : 10.3390/molecules27154845
Maranatha G, Fattah S, Sobang YUL, Yunus M, Henuk YL. 2020. Digestibility of dry matter and organic matter and the in vitro rumen parameters of complete feed from fermented corn cobs and moringa (Moringa oleifera) leaves meal. In: IOP Conf Ser Earth Environ Sci. Vol. 454. [place unknown]: Institute of Physics Publishing. DOI : 10.1088/1755-1315/454/1/012062
Minson, D. J. dan MNM leod. 1972. The In Vitro Technique, Its modification for estimating digestibility of large numbers of tropical pasture sample. Divisi on of Tropical Pasture Technical Paper. Common Wealth Sci Ind [Internet]. 8. CSIRO Australia. DOI : 10.25919/26ej-q387
Mirnawati, Ciptaan G, Ferawati. 2019. The effect of Bacillus subtilis inoculum doses and fermentation time on enzyme activity of fermented palm kernel cake. J World’s Poult Res. 9(4):211–216. DOI : 10.36380/JWPR.2019.26
Murni, Haryati, Aslamyah, Sonjaya H. 2018. The Nutrition Waste Vegetables with Invitro Using Rumen Liquids for Feed. J Food Nutr Sci. 6(2):58. DOI : 10.11648/j.jfns.20180602.13
Murni, Sonjaya H, Haryati, Aslamyah S. 2019. Measuring the Substitution of Vegetable Waste Fermented Rumen Fluid with Tofu Waste in Vannamei Shrimp Feed. Int J Adv Sci Eng Inf Technol. 9(6).DOI : 10.18517/ijaseit.9.6.9491
Murtius WS, Hari PD, Putri IN. 2022. The Effect of Incubation Time to the Activity of Lipase Produced by Bacillus thuringiensis on Coconut (Cocos nucifera L.) Dregs. IOP Conf Ser Earth Environ Sci. 1059(1). DOI : 10.1088/1755-1315/1059/1/012076
Novriadi, Romi, Fadhilah, Rifqi, Wahyudi, Eka A, Trullàs, Clara. 2021. Effects of hydrolysable tannins on the growth performance, total haemocyte counts and lysozyme activity of pacific white leg shrimp Litopenaeus vannamei. Aquac Reports. 21. DOI : 10.1016/j.aqrep.2021.100796
Nunes AJP, Dalen LL, Leonardi G, Burri L. 2022. Developing sustainable, cost-effective and high-performance shrimp feed formulations containing low fish meal levels. Aquac Reports. 27(September):1–12. DOI : 10.1016/j.aqrep.2022.101422
Nwosu JN, Ezegbe CC, Uzomah A, Iwouno JO, Olawuni IA. 2014. Evaluation of the antinutritional properties of the seed of Chinese fan palm (Livistona chinensis). Int’l J Curr Microbio Appl Sci [Internet]. 3(5):962–974. https://www.cabdirect.org/cabdirect/abstract/20143201469
Olawoye, Gbadamosi. 2017. Effect of different treatments on in vitro protein digestibility, antinutrients, antioxidant properties and mineral composition of Amaranthus viridis seed. Cogent Food Agric. 3(1). DOI : 10.1080/23311932.2017.1296402
Ortiz, Chavez-Garcia D, Barros-Rodríguez M, Andrade-Yucailla V, Lima-Orozco R, Macías-Rodríguez E, Guishca-Cunuhay C, Zeidan Mohamed Salem A. 2022. Rumen Function and In Vitro Gas Production of Diets Influenced by Two Levels of Tannin-Rich Forage. Fermentation. 8(11):607. DOI : 10.3390/fermentation8110607
Pathania S, Sharma N, Handa S. 2018. Utilization of horticultural waste (Apple Pomace) for multiple carbohydrase production from Rhizopus delemar F2 under solid state fermentation. J Genet Eng Biotechnol [Internet]. 16(1):181–189. DOI : 10.1016/j.jgeb.2017.10.013
Pham MA, Hwang GD, Kim YO, Seo JY, Lee SM. 2010. Soybean meal and wheat flour, proper dietary protein sources for optimal growth of snail (Semisulcospira coreana). Aquac Int. 18(5):883–895. DOI: 10.1007/s10499-009-9308-9
Pham VHT, Kim J, Shim J, Chang S, Chung W. 2022. Purification and Characterization of Strong Simultaneous Enzyme Production of Protease and ?-Amylase from an Extremophile-Bacillus sp. FW2 and Its Possibility in Food Waste Degradation. Fermentation. 8(1). DOI : 10.3390/fermentation8010012
Pongsetkul J, Benjakul S, Boonchuen P. 2022. Changes in Volatile Compounds and Quality Characteristics of Salted Shrimp Paste Stored in Different Packaging Containers. Fermentation. 8(2):1–19. DOI : 10.3390/fermentation8020069
Purwoko T, Suranto, Setyaningsih R, Marliyana SD. 2023. Caffeine degradation by food microorganisms. Biodiversitas. 24(6):3495–3502. DOI : 10.13057/biodiv/d240647
Qin P, Wang T, Luo Y. 2022. A review on plant-based proteins from soybean: Health benefits and soy product development. J Agric Food Res. 7. DOI : 10.1016/j.jafr.2021.100265
Ramli NAM, Chen YH, Mohd Zin Z, Abdullah MAA, Rusli ND, Zainol MK. 2021. Effect of soaking time and fermentation on the nutrient and antinutrients composition of Canavalia ensiformis (Kacang Koro). IOP Conf Ser Earth Environ Sci. 756(1). DOI : 10.1088/1755-1315/756/1/012033
Razavizadeh S, Alencikiene G, Vaiciulyte-Funk L, Ertbjerg P, Salaseviciene A. 2022. Utilization of fermented and enzymatically hydrolyzed soy press cake as ingredient for meat analogues. LWT. 165. DOI : 10.1016/j.lwt.2022.113736
Salim AA, Grbav?i? S, Šekuljica N, Stefanovi? A, Jakoveti? Tanaskovi? S, Lukovi? N, Kneževi?-Jugovi? Z. 2017. Production of enzymes by a newly isolated Bacillus sp. TMF-1 in solid state fermentation on agricultural by-products: The evaluation of substrate pretreatment methods. Bioresour Technol. 228:193–200. DOI : 10.1016/j.biortech.2016.12.081
Selim, Hasan MN, Rahman MA, Rahman MM, Islam MR, Bostami ABMR, Islam S, Tedeschi LO. 2022. Nutrient content and in vitro degradation study of some unconventional feed resources of Bangladesh. Heliyon. 8(5):e09496. DOI : 10.1016/j.heliyon.2022.e09496
Shang, Cao H, Ma YL, Zhang C, Ma F, Wang CX, Ni XL, Lee WJ, Wei ZJ. 2019. Effect of lactic acid bacteria fermentation on tannins removal in Xuan Mugua fruits. Food Chem. 274(August 2018):118–122. DOI : 10.1016/j.foodchem.2018.08.120
Shi C, He J, Yu J, Yu B, Huang Z, Mao X, Zheng P, Chen D. 2015. Solid state fermentation of rapeseed cake with Aspergillus niger for degrading glucosinolates and upgrading nutritional value. J Anim Sci Biotechnol. 6(1):1–7. DOI : 10.1186/s40104-015-0015-2
Sousa R, Recio I, Heimo D, Dubois S, Moughan PJ, Hodgkinson SM, Portmann R, Egger L. 2023. In vitro digestibility of dietary proteins and in vitro Diaas analytical workflow based on the Infogest static protocol and its validation with in vivo data. Food Chem. 404. DOI : 10.1016/j.foodchem.2022.134720
Vandenplas Y, Hegar B, Munasir Z, Astawan M, Juffrie M, Bardosono S, Sekartini R, Basrowi RW, Wasito E. 2021. The role of soy plant-based formula supplemented with dietary fiber to support children’s growth and development: An expert opinion. Nutrition [Internet]. 90:111278. DOI : 10.1016/j.nut.2021.111278
Vargas-Ortiz L, Chavez-Garcia D, Barros-Rodríguez M, Andrade-Yucailla V, Lima-Orozco R, Macías-Rodríguez E, Guishca-Cunuhay C, Zeidan Mohamed Salem A. 2022. Rumen Function and In Vitro Gas Production of Diets Influenced by Two Levels of Tannin-Rich Forage. Fermentation. 8(11):1–11. DOI : 10.3390/fermentation8110607
Wang, Ma S, Li L, Huang J. 2022. Effect of wheat bran dietary fiber on structural properties and hydrolysis behavior of gluten after synergistic fermentation of Lactobacillus plantarum and Saccharomyces cerevisiae. Front Nutr. 9(3). DOI : 10.3389/fnut.2022.982878
Wang R, Mohammadi M, Mahboubi A, Taherzadeh MJ. 2021. In-vitro digestion models: a critical review for human and fish and a protocol for in-vitro digestion in fish. Bioengineered. 12(1):3040–3064. DOI :10.1080/21655979.2021.1940769
Yang, Qu Y, Li J, Liu X, Wu R, Wu J. 2020. Improvement of the protein quality and degradation of allergens in soybean meal by combination fermentation and enzymatic hydrolysis. Lwt. 128(April):109442. DOI : 10.1016/j.lwt.2020.109442
Yarlina, Djali M, Andoyo R. 2020. A review of protein hydrolysis fermented foods and their potential for health benefits. In: IOP Conf Ser Earth Environ Sci. Vol. 443. [place unknown]. DOI : 10.1088/1755-1315/443/1/012085
Yunilas, Lili Warly, Yetti Marli, Irsan Riyanto. 2019. The Activity Of Cellulose Enzyme From Indigenous Bacteria “Bacillus Sp YLB1” As Bioactivator. J Peternak Integr. 7(2):10–18. DOI : 10.32734/jpi.v7i2.2143
Zainuddin Z, Aslamyah S, Nur K, Hadijah. 2019. The Effect of Dosage Combination and Feeding Frequency on Growth and Survival Rate of Vannamei Shrimp Juveniles in Ponds. IOP Conf Ser Earth Environ Sci. 370(1). DOI : 10.1088/1755-1315/370/1/012033
Zhang L, Song C, Chang J, Wang Z, Meng X. 2022. Optimization of protein hydrolysates production from defatted peanut meal based on physicochemical characteristics and sensory analysis. LWT. 163. DOI : 10.1016/j.lwt.2022.113572
Zhang M, Pan L, Fan D, He J, Su C, Gao S, Zhang Mengyu. 2021. Study of fermented feed by mixed strains and their effects on the survival, growth, digestive enzyme activity and intestinal flora of Penaeus vannamei. Aquaculture. 530. DOI : 10.1016/j.aquaculture.2020.735703
Zhang Y, Ishikawa M, Koshio S, Yokoyama S, Dossou S, Wang W, Zhang X, Shadrack RS, Mzengereza K, Zhu K, Seo S. 2021. Optimization of soybean meal fermentation for aqua-feed with bacillus subtilis natto using the response surface methodology. Fermentation. 7(4). DOI : 10.3390/fermentation7040306
Zhu L, Wei W, Wu R, Zhang X, Guo H, Wang D, Wu F. 2022. Dynamics of Enzyme Activities during the Decomposition of Castanopsis carlesii Leaf Litter in the Forest Canopy and Forest Floor in a Mid-Subtropical Area. Forests. 13(11). DOI : 10.3390/f13111944
Zhu X, Wang L, Zhang Z, Ding L, Hang S. 2021. Combination of fiber-degrading enzymatic hydrolysis and lactobacilli fermentation enhances utilization of fiber and protein in rapeseed meal as revealed in simulated pig digestion and fermentation in vitro. Anim Feed Sci Technol. 278. DOI : 10.1016/j.anifeedsci.2021.115001
Zulkarnain, Zuprizal, Wihandoyo, Supadmo. 2016. Effect of cellulase supplementation on in vitro digestibility and energy,crude fiber and cellulose content of sago palm (Metroxylon sp.) waste as broiler chicken feed. Pakistan J Nutr. 15(11):997–1002. DOI : 10.3923/pjn.2016.997.1002