Estimating nutrient composition and polyphenol concentration using Near-Infrared Spectroscopy (NIRS) in tropical forages

##plugins.themes.bootstrap3.article.main##

HIKMAH A. PARASTIWI
NENG SRI H. LESTARI
YULIANRI R. YANZA
VINCENT NIDERKORN
RONI RIDWAN
ANURAGA JAYANEGARA

Abstract

Abstract. Parastiwi HA, Lestari NSH, Yanza YR, Niderkorn V, Ridwan R, Jayanegara A. 2023. Estimating nutrient composition and polyphenol concentration using Near-Infrared Spectroscopy (NIRS) in tropical forages. Biodiversitas 24: 6652-6660. This study aimed to evaluate the accuracy and precision of Near-Infrared spectroscopy (NIRS) in determining nutrient composition and total phenol concentration in tropical forages. A total of 48 tropical forages from 33 species were subjected to measurements using conventional methods and NIRS equipment for rapid determination. The measured variables included Dry Matter (DM), ash, Crude Protein (CP), Ether Extract (EE), Crude Fiber (CF), and Total Phenolic (TP). The values obtained from NIRS were then statistically evaluated to obtain their coefficient of determination (R2), Standard Error (SE), and Root Mean Square Error (RMSE). Each tropical forage was assessed with three scanning repetitions, where two were conducted to calibrate NIRS determination, and another was performed to validate the NIRS results. All values obtained from the measured samples using both methods in this study were statistically analyzed through Partial Least Square (PLS) regression model. The results showed that the accuracy of NIRS for estimating nutrient content and total phenolic among different tropical forages was varied. NIRS was precise and accurate for estimating crude protein and total phenolic contents of tropical forages but showed lower accuracy for estimating EE content.

##plugins.themes.bootstrap3.article.details##

References
Andueza D, Picard F, Dozias D, Aufrère J. 2017. Fecal near-infrared reflectance spectroscopy prediction of the feed value of temperate forages for ruminants and some parameters of the chemical composition of feces: Efficiency of four calibration strategies. Appl Spectrosc 71 (9): 2164-2176. DOI: 10.1177/0003702817712740.
AOAC. 2005. Official Methods of Analyses (17th eds). Association of Official Analythical Chemists, Washington.
Bell MJ, Mereu L, Davis J. 2018. The use of mobile near-infrared spectroscopy for real-time pasture management. Front Sustain Food Syst 2: 76. DOI: 10.3389/fsufs.2018.00076.
Brown AN, Ferreira G, Teets CL, Thomason WE, Teutsch CD. 2017. Nutritional composition and in vitro digestibility of grass and legume winter (cover) crops. J Dairy Sci 101 (3): 2037-2047. DOI: 10.3168/jds.2017-13260.
Cendrowski A, ?cibisz I, Kieliszek M, Kolniak-Ostek J, Mitek M. 2017. UPLC-PDA-Q/TOF-MS profile of polyphenolic compounds of liqueurs from rose petals (Rosa rugosa). Molecules 22 (11): 1832. DOI: 10.3390/molecules22111832.
Ciurczak EW, Igne B, Workman JrJ, Burns DA. 2021. Handbook of Near-Infrared Analysis (4th eds). CRC Press, New York.
Cömert ED, Gökmen V. 2018. Evolution of food antioxidants as a core topic of food science for a century. Food Res Intl 105: 76-93. DOI: 10.1016/j.foodres.2017.10.056.
Csepregi K, Kocsis M, Hideg E. 2013. On the spectrophotometric determination of total phenolic and flavonoid contents. Acta Biol Hung 64 (4): 500-509. DOI: 10.1556/ABiol.64.2013.4.10.
Despal D, Sari LA, Chandra R, Zahera R, Permana IG, Abdullah L. 2020. Prediction accuracy improvement of indonesian dairy cattle fiber feed compositions using near-infrared reflectance spectroscopy local database. Trop Anim Sci J 43 (3): 263-269. DOI: 10.5398/tasj.2020.43.3.263.
Dias CSAMM, Nunes HPB, Borba AES. 2023. Influence of the physical properties of samples in the use of nirs to predict the chemical composition and gas production kinetic parameters of corn and grass silages. Fermentation 9 (5): 418. DOI: 10.3390/fermentation9050418.
Dini I, Grumetto L. 2022. Recent advances in natural polyphenol research. Molecules 27 (24): 8777. DOI: 10.3390/molecules27248777.
Fayique AC, Thomas UC. 2018. Secondary metabolites in forage crops - A review. Intl J Pure Appl Biosci 6 (3): 490-495. DOI: 10.18782/2320-7051.6216.
Fekadu D, Bediye S, Kehaliw A, Daba T, Kitaw G, Assefa G. 2010. Near Infrared Reflectance Spectroscopy (NIRS) for determination of chemical entities of natural pasture from Ethiopia. Agric Biol J North Am 1 (5): 919-922. DOI:10.5251/abjna.2010.1.5.919.922.
Felde TZ, Baumert A, Strack D, Becker HC, Möllers C. 2007. Genetic variation for sinapate ester content in winter rapeseed (Brassica napus L.) and development of NIRS calibration equations. Plant Breed 126 (3): 291-296. DOI: 10.1111/j.1439-0523.2007.01342.x.
Ikoyi AY, Younge BA. 2020. Influence of forage particle size and residual moisture on Near Infrared Reflectance Spectroscopy (NIRS) calibration accuracy for macro-mineral determination. Anim Feed Sci Technol 270: 114674. DOI: 10.1016/j.anifeedsci.2020.114674.
Ikoyi AY, Younge BA. 2022. Faecal near-infrared reflectance spectroscopy profiling for the prediction of dietary nutritional characteristics for equines. Anim Feed Sci Technol 290: 115363. DOI: 10.1016/j.anifeedsci.2022.115363
Jayanegara A, Marquardt S, Wina E, Kreuzer M, Leiber F. 2013. In vitro indications for favourable non-additive effects on ruminal methane mitigation between high-phenolic and high-quality forages. Br J Nutr 109 (4): 615-622. DOI: 10.1017/S0007114512001742.
Jayanegara A, Yogianto Y, Wina E, Sudarman A, Kondo M, Obitsu T, Kreuzer M. 2020. Combination effects of plant extracts rich in tannins and saponins as feed additives for mitigating in vitro ruminal methane and ammonia formation. Animals 10 (9): 1531. DOI: 10.3390/ani10091531.
Kagan IA, Goodman JP, Seman DH, Lawrence LM, Smith SR. 2019. Effects of harvest date, sampling time, and cultivar on total phenolic concentrations, water-soluble carbohydrate concentrations, and phenolic profiles of selected cool-season grasses in Central Kentucky. J Equine Vet Sci 79: 86-93. DOI: 10.1016/j.jevs.2019.05.005.
Kljusuri? JG, Mihalev K, Be?i? I, Polovi? I, Georgieva M, Djakovi? S, Kurtanjek Ž. 2016. Near-infrared spectroscopic analysis of total phenolic content and antioxidant activity of berry fruits. Food Technol Biotechnol 54 (2): 236-242. DOI: 10.17113/ftb.54.02.16.4095.
Küchenmeister K, Küchenmeister F, Kayser M, Wrage-Mönnig N, Isselstein J. 2013. Influence of drought stress on nutritive value of perennial forage legumes. Intl J Plant Prod 7 (4): 693-710. DOI: 10.22069/ijpp.2013.1265.
Lingwan M, Masakapalli SK. 2022. A robust method of extraction and GC-MS analysis of Monophenols exhibited UV-B mediated accumulation in Arabidopsis. Physiol Mol Biol Plants 28 (2): 533-543. DOI: 10.1007/s12298-022-01150-2.
Lobos I, Gou P, Hube S, Saldaña R, Alfaro M. 2013. Evaluation of potential nirs to predict pastures nutritive value. J Soil Sci Plant Nutr 13 (2): 463-468. DOI: 10.4067/S0718-95162013005000036.
Makkar HPS. 2003. Quantification of Tannins in Tree and Shrub Foliage, A Laboratory Manual. Kluwer Academic Pub, Dordrecht.
Malley DF, Martin PD, Ben-Dor E. 2004. Application in Analysis of Soils. In: Roberts CA, Workman Jr. J, Reeves III JB (eds). Near?Infrared Spectroscopy in Agriculture. John Wiley, Hoboken, New Jersey. DOI: 10.2134/agronmonogr44.c26.
Mazur WM, Duke JA, Wähälä K, Rasku S, Adlercreutz H. 1998. Isoflavonoids and lignans in legumes: nutritional and health aspects in humans. J Nutr Biochem 9 (4): 193-200. DOI: 10.1016/S0955-2863(97)00184-8.
Mizzi L, Chatzitzika C, Gatt R, Valdramidis V. 2020. HPLC analysis of phenolic compounds and flavonoids with overlapping peaks. Food Technol Biotechnol 58 (1): 12-19. DOI: 10.17113/ftb.58.01.20.6395.
Nicolás-García M, Jiménez-Martínez C, Perucini-Avendaño M, Camacho-Díaz BH, Jiménez-Aparicio AR, Dávila-Ortiz G. 2022. Phenolic Compounds in Legumes: Composition, Processing and Gut Health. In: Jimenez-Lopez JC, Clemente A (eds). Legume Research - Volume 2. IntechOpen, Croatia. DOI: 10.5772/intechopen.98202.
Niderkorn V, Jayanegara A. 2021. Opportunities offered by plant bioactive compounds to improve silage quality, animal health and product quality for sustainable ruminant production: A review. Agronomy 11 (1): 86. DOI: 10.3390/agronomy11010086.
Nieto-Ortega B, Arroyo J-J, Walk C, Castañares N, Canet E, Smith A. 2022. Near infrared reflectance spectroscopy as a tool to predict non-starch polysaccharide composition and starch digestibility profiles in common monogastric cereal feed ingredients. Anim Feed Sci Technol 285: 115214. DOI: 10.1016/j.anifeedsci.2022.115214.
Parrini S, Acciaioli A, Crovetti A, Bozzi R. 2017. Use of FT-NIRS for determination of chemical components and nutritional value of natural pasture. Ital J Anim Sci 17 (1): 87-91. DOI: 10.1080/1828051x.2017.1345659.
Pepeta BN, Moyo M, Adejoro FA, Hassen A, Nsahlai IV. 2022. Techniques used to determine botanical composition, intake, and digestibility of forages by ruminants. Agronomy 12 (10): 2456. DOI: 10.3390/agronomy12102456.
Roberts CA, Workman J, Reeves JB. 2003. Near Infrared Spectroscopy in Agriculture. American Society of Agronomy Inc, Madison. .
Schwanninger M, Rodrigues JC, Fackler K. 2011. A review of band assignments in near infrared spectra of wood and wood components. J Near Infrared Spectrosc 19 (5): 287-308. DOI: 10.1255/jnirs.955.
Seradj AR, Abecia L, Crespoc J, Villalba D, Fondevila M, Balcells J. 2014. The effect of Bioflavex® and its pure flavonoid components on in vitro fermentation parameters and methane production in rumen fluid from steers given high concentrate diets. Anim Feed Sci Technol 197: 85-91. DOI: 10.1016/j.anifeedsci.2014.08.013.
Shenk JS, Westerhaus MO. 1991. Population definition, sample selection, and calibration procedures for near infrared reflectance spectroscopy. Crop Sci 31 (2): 469-474. DOI: 10.2135/cropsci1991.0011183X003100020049x.
Tungmunnithum D, Drouet S, Lorenzo JM, Hano C. 2021. Characterization of bioactive phenols and antioxidant capacity of edible bean extracts of 50 fabaceae populations grown in Thailand. Foods 10 (12): 3118. DOI: 10.3390/foods10123118.
Walker J. 2010. Primer on near infrared spectroscopy. In: Walker J, Tolleson D (eds). Shining Light on Manure Improves Livestock and Land Management. Brown Printing, Missouri, USA.
Wang Q, Liu J, Zhu H. 2018. Genetic and molecular mechanisms underlying symbiotic specificity in legume-rhizobium interactions. Front Plant Sci 9: 313. DOI: 10.3389/fpls.2018.00313.
Williams PC. 2001. Implementation of near-infrared technology. In: Williams P, Norris K (eds). Near-Infrared Technology in the Agricultural and Food Industries, 2nd Edition. American Association of Cereal Chemists, St. Paul.
Wu L, Li M, Huang J, Zhang H, Zou W, Hu S, Li Y, Fan C, Zhang R, Jing H, Peng L, Feng S. 2015. A near infrared spectroscopic assay for stalk soluble sugars, bagasse enzymatic saccharification and wall polymers in sweet sorghum. Bioresour Technol 177: 118-124. DOI: 10.1016/j.biortech.2014.11.073.
Wulandari S, Adhyatma M, Pantaya D, Jayanegara A, Nurfitriani RA. 2022. Near infrared spectroscopy for the quality control of rice bran. Livest Anim Res 20 (2): 210-219. DOI: 10.20961/lar.v20i2.54353.
Yang Z, Nie G, Pan L, Zhang Y, Huang L, Ma X, Zhang X. 2017. Development and validation of near- infrared spectroscopy for the prediction of forage quality parameters in Lolium multiflorum. PeerJ 5: e3867. DOI: 10.7717/peerj.3867.
Yanza YR, Fitri A, Suwignyo B, Elfahmi, Hidayatik N, Kumalasari NR, Irawan A, Jayanegara A. 2021. The utilisation of tannin extract as a dietary additive in ruminant nutrition: A meta-analysis. Animals 11 (11): 3317. DOI: 10.3390/ani11113317.
Yanza YR, Szumacher-Strabel M, Bryszak M, Gao M, Kolodziejski P, Stochmal A, Slusarczyk S, Patra AK, Cieslak A. 2018. Coleus amboinicus (Lour.) leaves as a modulator of ruminal methanogenesis and biohydrogenation in vitro. J Anim Sci 96 (11): 4868-4881. DOI: 10.1093/jas/sky321.
Yanza YR, Szumacher-Strabel M, Lechniak D, ?lusarczyk S, Kolodziejski P, Patra AK, Váradyová Z, Lisiak D, Vazirigohar M, Cieslak A. 2022. Dietary Coleus amboinicus Lour. decreases ruminal methanogenesis and biohydrogenation, and improves meat quality and fatty acid composition in longissimus thoracis muscle of lambs. J Anim Sci Biotechnol 13 (1): 5. DOI: 10.1186/s40104-021-00654-3.
Zhang Y, MacAdam JW, Villalba JJ, Dai X. 2020. In vitro digestibility of mountain-grown irrigated perennial legume, grass and forb forages is influenced by elevated non-fibrous carbohydrates and plant secondary compounds. J Sci Food Agric 101: 334-340. DOI: 10.1002/jsfa.10648.
Zicarelli F, Sarubbi F, Iommelli P, Grossi M, Lotito D, Tudisco R, Infascelli F, Musco N, Lombardi P. 2023. Nutritional characteristics of corn silage produced in Campania Region estimated by Near Infrared Spectroscopy (NIRS). Agronomy 13 (3): 634. DOI: 10.3390/agronomy13030634.