Microbial diversity in pesticidal and non-pesticidal paddy soil microbiomes

##plugins.themes.bootstrap3.article.main##

R. SUSANTI
NAINA RIZKI KENARNI
ADI FRANATA JAYA
FARAH FITROTUN NISA’
RISKA LAILA MUKAROMAH
TALITHA WIDIATNINGRUM
NANA KARIADA TRI MARTUTI
MARGARETA RAHAYUNINGSIH

Abstract

Abstract. Susanti R, Kenarni NR, Jaya AF, Nisa’ FF, Mukaromah RL, Widiatningrum T, Martuti NKT, Rahayuningsih M. 2023. Microbial diversity in pesticidal and non-pesticidal paddy soil microbiomes. Biodiversitas 24: 4723-4730. The use of pesticides can affect the physical and chemical properties of paddy soil. Soil physical and chemical properties can indicate soil quality because they affect soil microbial activity. This study used an exploratory observational method to analyze the diversity and abundance of microbes in the soil microbiome of pesticide paddy fields (PPF) and non-pesticide paddy fields (PF). The PPF samples were taken from Purwosari Village, Mijen Subdistrict, Semarang City, while the PF samples were taken from Tambangan Village, Mijen Subdistrict, Semarang City. Soil samples were taken for chemical and metagenomic analysis based on 16S rRNA gene marker region V3-V4. The results showed that microbial PPF diversity was higher than PF's based on the Shannon and Simpson index. The PPF microbiome is dominated by 3 bacterial phyla, namely Proteobacteria (26.61%), Actinobacteriota (15.13%) and Acidobacteriota (11.44%). Meanwhile, the PF microbiome was dominated by Proteobacteria (28.73%), Acidobacteriota (12.80%), and Chloroflexi (11.41%). The Archaea phylum that dominates PPF are Halobacterota (62.78%), Euryarchaeota (20.82%), and Crenarchaeota (10.89%), while in PF it is dominated by Halobacterota (80.43%), Crenarchaeota (11.03%) and Euryarchaeota (5.04%). The phylum that plays an important role in the biodegradation of organochlorine pesticides is Actinobacteria, which dominates in PPF; low abundance of Nitrospirota in PPF as a bioindicator of organochlorine pesticide contamination.

##plugins.themes.bootstrap3.article.details##

References
Ali, I., Yuan, P., Ullah, S., Iqbal, A., Zhao, Q., Liang, H., Khan, A., Imran, Zhang, H., Wu, X., Wei, S., Gu, M., & Jiang, L. 2022. Biochar amendment and nitrogen fertilizer contribute to the changes in soil properties and microbial communities in a paddy field. Frontiers in Microbiology 13: 1–15. DOI: 10.3389/fmicb.2022.834751
Bonanomi, G., Filippis, F. De, Cesarano, G., Storia, A. La, Ercolini, D., & Scala, F. 2016. Organic farming induces changes in soil microbiota that affect agro-ecosystem functions. Soil Biology and Biochemistry 103: 327–336. DOI: 10.1016/j.soilbio.2016.09.005
Brauer, S. L., Basiliko, N., Siljanen, H. M. P., & Zinder, S. H. 2020. Methanogenic archaea in peatlands. Federation of European Microbiological Societies Microbiology Letters 367(20): 1–18. DOI: 10.1093/femsle/fnaa172
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. 2019. DADA2: High resolution sample inference from Illumina amplicon data. Physiology & Behavior 176(3): 139–148. DOI: 10.1038/nmeth.3869.DADA2
Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Peña, A. G., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., McDonald, D., Muegge, B. D., Pirrung, M., Knight, R. 2010. QIIME allows analysis of high- throughput community sequencing data. Nature 7(5): 335–336. DOI: 10.1038/nmeth.f.303.
Castañeda, L. E., & Barbosa, O. 2017. Metagenomic analysis exploring taxonomic and functional diversity of soil microbial communities in Chilean vineyards and surrounding native forests. PeerJ 5(3): 1–19. DOI: 10.7717/peerj.3098
Cederlund, H., Wessén, E., Enwall, K., Jones, C. M., Juhanson, J., Pell, M., Philippot, L., & Hallin, S. 2014. Soil carbon quality and nitrogen fertilization structure bacterial communities with predictable responses of major bacterial phyla. Applied Soil Ecology 84: 62–68. DOI: 10.1016/j.apsoil.2014.06.003
Chao, A. 1984. Nonparametric Estimation of the Number of Classes in a Population. Scandinavian Journal of Statistics 11(4): 265–270. https://www.jstor.org/stable/4615964
Chou, Y. M., Shen, F. T., Chiang, S. C., & Chang, C. M. 2017. Functional diversity and dominant populations of bacteria in banana plantation soils as influenced by long-term organic and conventional farming. Applied Soil Ecology 110: 21–33. DOI: 10.1016/j.apsoil.2016.11.002
Dai, Z., Su, W., Chen, H., Barberán, A., Zhao, H., Yu, M., Yu, L., Brookes, P. C., Schadt, C. W., Chang, S. X., & Xu, J. 2018. Long-term nitrogen fertilization decreases bacterial diversity and favors the growth of Actinobacteria and Proteobacteria in agro-ecosystems across the globe. Global Change Biology 24(8): 3452–3461. DOI: 10.1111/gcb.14163
Daniel, R. 2005. The metagenomics of soil. Nature Reviews Microbiology 3(6): 470–478. DOI: 10.1038/nrmicro1160
Demanou, J., Sharma, S., Weber, A., Wilke, B. M., Njine, T., Monkiedje, A., Munch, J. C., & Schloter, M. 2019. Shifts in microbial community functions and nitrifying communities as a result of combined application of copper and mefenoxam. Federation of European Microbiological Societies Microbiology Letters 260(1): 55–62. DOI: 10.1111/j.1574-6968.2006.00299.x
DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., Huber, T., Dalevi, D., Hu, P., & Andersen, G. L. 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology 72(7): 5069–5072. DOI: 10.1128/AEM.03006-05
Egbe, C. C., Oyetibo, G. O., & Ilori, M. O. 2020. Ecological impact of organochlorine pesticides consortium on autochthonous microbial community in agricultural soil. Ecotoxicology and Environmental Safety 207(2021): 1–9. DOI: 10.1016/j.ecoenv.2020.111319
Gao, S. juan, Chang, D., Zou, C., Cao, W., Gao, J., Huang, J., Bai, J., Zeng, N., Rees, R. M., & Thorup-Kristensen, K. 2018. Archaea are the predominant and responsive ammonia oxidizing prokaryotes in a red paddy soil receiving green manures. European Journal of Soil Biology 88: 27–35. DOI: 10.1016/j.ejsobi.2018.05.008
Hadi, M., Soesilohadi, R. C. H., Wagiman, F. X., & Rahayuningsih, Y. 2014. Pertanian organik suatu alternatif pengelolaan ekosistem sawah yang sehat, alami dan ramah lingkungan. Buletin Anatomi Dan Fisiologi 22(1): 72–77. DOI: DOI: 10.14710/baf.v22i1.7811
Herdiyanto, D., & Setiawan, A. 2015. Upaya peningkatan kualitas tanah di Desa Sukamanah dan Desa Nanggerang Kecamatan Cigalontang Kabupaten Tasikmalaya Jawa Barat melalui sosialisasi pupuk hayati, pupuk organik dan olah tanah konservasi. Dharmakarya: Jurnal Aplikasi Ipteks Untuk Masyarakat 4(1): 47–53. DOI: 10.24198/dharmakarya.v4i2.10028
Holm, J. B., Humphrys, M. S., Robinson, C. K., Settles, M. L., Ott, S., Fu, L., Yang, H., Gajer, P., He, X., McComb, E., Gravitt, P. E., Ghanem, K. G., Brotman, R. M., & Ravel, J. 2019. Ultrahigh-throughput multiplexing and sequencing of >500- base-pair amplicon regions on the Illumina HiSeq 2500 platform. MSystems 4(1): 1–10. DOI: 10.1128/msystems.00029-19
Hu, H. W., Zhang, L. M., Yuan, C. L., & He, J. Z. 2013. Contrasting Euryarchaeota communities between upland and paddy soils exhibited similar pH-impacted biogeographic patterns. Soil Biology and Biochemistry 64: 18–27. DOI: 10.1016/j.soilbio.2013.04.003
Irfan, M. 2014. Isolasi dan enumerasi bakteri tanah gambut di perkebunan kelapa sawit PT. Tambang Hijau Kecamatan Tambang Kabupaten Kampar. Jurnal Agroteknologi, 5(1): 1–8. DOI:10.24014/ja.v5i1.1141
Li, F., Chen, L., Zhang, J., Yin, J., & Huang, S. 2017. Bacterial community structure after long-term organic and inorganic fertilization reveals important associations between soil nutrients and specific taxa involved in nutrient transformations. Frontiers in Microbiology 8(187): 1–12. DOI: 10.3389/fmicb.2017.00187
Li, Y., Liang, Y., Zhang, H., Liu, Y., Zhu, J., Xu, J., Zhou, Z., Ma, J., Liu, K., & Yu, F. 2021. Variation, distribution, and diversity of canonical ammonia-oxidizing microorganisms and complete-nitrifying bacteria in highly contaminated ecological restoration regions in the Siding mine area. Ecotoxicology and Environmental Safety 217: 1–10. DOI: 10.1016/j.ecoenv.2021.112274
Lovecka, P., Pacovska, I., Stursa, P., Vrchotova, B., Kochankova, L., & Demnerova, K. 2015. Organochlorinated pesticide degrading microorganisms isolated from contaminated soil. New Biotechnology 32(1): 26–31. DOI: 10.1016/j.nbt.2014.07.003
Mberulata, N., Berek, N. C., & Setyobudi, A. 2022. Pesticide use and health complaints among farmers in Lata Lanyir Village, Lewa Tidahu Sub District, East Sumba Regency. Media Kesehatan Masyarakat 4(2): 253–263. DOI: 10.35508/mkm
McDonald, D., Ppaddy, M. N., Goodrich, J., Nawrocki, E. P., Desantis, T. Z., Probst, A., Andersen, G. L., Knight, R., & Hugenholtz, P. 2012. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. Multidisciplinary Journal of Microbial Ecology 6(3): 610–618. DOI: 10.1038/ismej.2011.139
Pershina, E., Valkonen, J., Kurki, P., Ivanova, E., Chirak, E., Korvigo, I., Provorov, N., & Andronov, E. 2015. Comparative analysis of prokaryotic communities associated with organic and conventional farming systems. Public Library of Science One 10(12): 1–16. DOI: 10.1371/journal.pone.0145072
Prakoso, S. P., Wirajana, I. N., & Suarsa, I. W. 2017. Amplifikasi fragmen gen 18S rRNA pada DNA metagenomik madu dengan teknik PCR (Polymerase Chain Reaction). Indonesian Journal of Legal and Forensic Sciences (IJLFS) 7(3): 1. DOI: 10.24843/ijlfs.2017.v07.i01.p03
Rai, I. G. A., Suryatini, K. Y., Subratac, I. M., Yundari, N. L. R., & Budiyasae, I. W. 2020. Keanekaragaman jenis makrofauna tanah pada lahan budidaya kentang organik di Desa Candikuning Kabupaten Tabanan sebagai sumber pembelajaran biologi. Jurnal Emasains 9(2): 158–170. DOI: 10.5281/zenodo.4299419
Saraswati, R., & Sumarno. 2018. Pemanfaatan mikroba penyubur tanah sebagai komponen teknologi pertanian. Iptek Tanaman Pangan 3(1): 41–58. http://repository.pertanian.go.id/handle/123456789/4226
Shannon, C. E., & Weaver, W. 1949. The Mathematical theory of communication.
Simpson, E. 1949. Measurment of diversity. Nature 163: 688. DOI: 10.1038/163688a0
Sucipta, N. K. S. P., Kartini, N. L., & Soniari, N. N. 2015. Pengaruh populasi cacing tanah dan jenis media terhadap kualitas pupuk organik. E-Jurnal Agroekoteknologi Tropika 4(3): 213–223.
Supriatna, Siahaan, S., & Restiaty, I. 2021. Pencemaran tanah oleh pestisida di perkebunan sayur Kelurahan Eka Jaya Kecamatan Jambi Selatan Kota Jambi (studi keberadaan jamur makroza dan cacing tanah). Jurnal Ilmiah Universitas Batanghari Jambi 21(1): 460–466. DOI: 10.33087/jiubj.v21i1.1348
Wang, C.-N., Wu, R.-L., Li, Y.-Y., Qin, Y.-F., Li, Y.-L., Meng, F.-Q., Wang, L.-G., & Xu, F.-L. 2020. Effects of pesticide residues on bacterial community diversity and structure in typical greenhouse soils with increasing cultivation years in Northern China. Science of The Total Environment 710: 1–9. DOI: 10.1016/j.scitotenv.2019.136321
Wang, S., Wang, K., Li, L., & Liu, Y. 2013. Isolation and characterization of a novel organic solvent-tolerant and halotolerant esterase from a soil metagenomic library. Journal of Molecular Catalysis B: Enzymatic 95: 1–8. DOI: 10.1016/j.molcatb.2013.05.015
Wihardjaka, A. 2015. Mitigasi emisi gas metana melalui pengelolaan lahan sawah. Jurnal Penelitian Dan Pengembangan Pertanian 34(3): 95–104.
Wu, J., Wang, M., Li, P., Shen, L., Ma, M., Xu, B., Zhang, S., Sha, C., Ye, C., Xiong, L., & Huang, S. 2022. Effects of pig manure and its organic fertilizer application on archaea and methane emission in paddy fields. Land 11: 1–22. DOI: 10.3390/land11040499
Yarza, P., Yilmaz, P., Pruesse, E., Glöckner, F. O., Ludwig, W., Schleifer, K. H., Whitman, W. B., Euzéby, J., Amann, R., & Rosselló-Móra, R. 2014. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nature Reviews Microbiology 12(9): 635–645. DOI: 10.1038/nrmicro3330

Most read articles by the same author(s)