Species richness pattern of aquatic vascular macrophytes along elevation gradients in Nepal Himalayas




Abstract. Siwakoti EA, Nepali B, Mandal TN, Baniya CB. 2023. Species richness pattern of aquatic vascular macrophytes along elevation gradients in Nepal Himalayas. Biodiversitas 24: 5179-5190. Aquatic vascular macrophytes constitute an important component of aquatic ecosystems. This study aims to determine the species richness pattern of aquatic vascular macrophytes along elevation gradients (100-4900 m asl) in the Nepal Himalayas. We used available published literature on elevational ranges of aquatic vascular macrophytes in Nepal to interpolate the species elevational ranges, thereby providing species richness estimates for 100 m elevational bands. A total of 113 species of aquatic vascular macrophytes belonging to 66 genera under 35 families were recorded from Nepal. Among these macrophytes, dicots were represented by 21 families, monocots with 10 families and pteridophytes with 4 families. Regarding the geographical divisions, the total number of aquatic vascular macrophytes recorded was 76 from the east, 90 from the central and 67 from the west, conclusively central Nepal showed the maximum number of macrophytes. The highest species richness was contributed by Hydrocharitaceae followed by Potamogetonaceae, Plantaginaceae, Lentibulariaceae and Nymphaeaceae. So far, the functional types of macrophytes are concerned, free-floating species were 15, submerged species were 36, floating-leaved species were 18 and emergent species were 44 along elevation gradients in the three geographical divisions in Nepal. The Generalized Linear Model (GLM) was applied to find out the relation between the species richness of aquatic vascular macrophytes with elevation. It showed a statistically significant monotonic declining pattern with increasing elevation. The occurrence of this model was further verified by aquatic vascular macrophyte richness at every 200 m elevation which converged with the general pattern. The study conducted along one of the world’s longest bioclimatic elevational gradients led to support the monotonic declining pattern of aquatic vascular macrophytes richness indicating the difference in richness pattern among aquatic and terrestrial ecosystems. It also emphasizes the importance of conserving aquatic ecosystems with their vegetation.


Acharya KP, Vetaas OR, Birks HJB. 2011. Orchid species richness along. Himalayan elevational gradients. J. Biogeogr 38: 1821–1833. DOI: 10.1111/j.1365-2699.2011.02511.x.
Alahuhta J, Lindholm M, Bove CP, Chappuis E, Clayton J, Winton M de, Feldmann T, Ecke F, Gacia E, Grillas P. 2018. Global patterns in the metacommunity structuring of lake macrophytes: Regional variations and driving factors. Oecologia 188: 1167–1182. DOI: 10.1007/s00442-018-4294-0.
Ansari AA, Naeem M, Gill SS, Alzuaibr FM. 2020. Phytoremediation of contaminated waters: Egypt. J. Aquat. Res 46 (4): 371–376. DOI: 10.1016/j.ejar.2020.03.002.
Baniya CB, Solhøy T, Gauslaa Y, Palmer M W. 2010. The elevation gradient of lichen species richness in Nepal. The Lichenologist 42 (1): 83–96. DOI: 10.1017/S0024282909008627.
Beck J, McCain CM, Axmacher JC, Ashton LA, Bärtschi F, Brehm G, Choi SW, Cizek O, Colwell RK, Fiedler K. 2017. Elevational species richness gradients in a hyperdiverse insect taxon: A global meta-study on geometrid moths. Glob. Ecol. Biogeogr 26 (4): 412–424. DOI: 10.1111/geb.12548.
Bhatt JP, Manish K, Pandit MK. 2012. Elevational gradients in fish diversity in the Himalaya: Water discharge is the key driver of distribution patterns. PLoS One 7 (9): e46237. DOI: 10.1371/journal.pone.0046237.
Bhatta, K. P., J. A. Grytnes, and O. R. Vetaas. 2018. Scale sensitivity of the relationship between alpha and gamma diversity along an alpine elevation gradient in central Nepal. J. Biogeogr 45 (4): 804–814. DOI: 10.1111/jbi.13188.
Bhattarai KR, Vetaas OR. 2003. Variation in plant species richness of different life forms along a subtropical elevation gradient in the Himalayas, east Nepal. Glob. Ecol. Biogeogr 12: 327–340. DOI: 10.1046/j.1466-822X.2003.00044.x.
Bhattarai KR, Vetaas OR. 2006. Can Rapoport’s rule explain tree species richness along the Himalayan elevation gradient, Nepal? Divers. Distrib 12 (4): 373–378. DOI: 10.1111/j.1366-9516.2006.00244.x.
Bhattarai KR, Ghimire M. 2006. Commercially important medicinal and aromatic plants of Nepal and their distribution pattern and conservation measure along the elevation gradient of the Himalayas. Banko Janakari 16 (1): 3–13. DOI: 10.3126/banko.v16i1.357.
Bhattarai KR, Vetaas OR, Grytnes JA. 2004. Fern species richness along a central Himalayan elevational gradient, Nepal. J. Biogeogr 31 (3): 389–400. DOI: 10.1046/j.0305-0270.2003.01013.x.
Bhattarai KR, Måren IE, Subedi SC. 2014. Biodiversity and invasibility: Distribution patterns of invasive plant species in the Himalayas, Nepal. J. Mt. Sci 11 (3): 688–696. DOI: 10.1007/s11629-013-2821-3.
Bini LM, Velho LFM, Lansac-Tôha FA. 2003. The effect of connectivity on the relationship between local and regional species richness of testate amoebae (protozoa, rhizopoda) in floodplain lagoons of the Upper Paraná River, Brazil. Acta Oecol 24: S145–S151. DOI: 10.1016/S1146-609X(03)00040-7.
Bornette, G., and S. Puijalon. 2011. Response of aquatic plants to abiotic factors: A review. Aquat Sci 73: 1–14. DOI: 10.1007/s00027-010-0162-7.
Budhathoki A, Babel MS, Shrestha S, Meon G, Kamalamma AG. 2021. Climate change impact on water balance and hydrological extremes in different physiographic regions of the West Seti River Basin, Nepal. Ecohydrol. Hydrobiol 21 (1): 79–95. DOI: 10.1016/j.ecohyd.2020.07.001.
Chalise SR, Kansakar SR, Rees G, Croke K, Zaidman M. 2003. Management of water resources and low flow estimation for the Himalayan basins of Nepal. J. Hydrol 282 (1): 25–35. DOI: 10.1016/S0022-1694(03)00250-6.
Chakravarty R, Mohan R, Voigt CC, Krishnan A, Radchuk.V. 2021. Functional diversity of Himalayan bat communities declines at high elevation without the loss of phylogenetic diversity. Scientific Reports 11:22566. DOI: 10.1038/s41598-021-01939-3.
Chambers PA, Lacoul P, Murphy KJ, Thomaz SM. 2008. Global diversity of aquatic macrophytes in freshwater. In: Freshwater Animal Diversity Assessment. Springer, 595 (1): 9–26. DOI: 10.1007/s10750-007-9154-6.
Chappuis E, Ballesteros E, Gacia E. 2011a. Aquatic macrophytes and vegetation in the Mediterranean area of Catalonia: Patterns across an altitudinal gradient. Phytocoenologia 41 (1); 35–44. DOI: 10.1127/0340-269X/2011/0041-0467.
Chappuis E, Gacia, E, Ballesteros E. 2011b. Changes in aquatic macrophyte flora over the last century in Catalan water bodies (NE Spain). Aquat. Bot. 95 (4): 268–277. DOI: 10.1016/j.aquabot.2011.08.006.
Chappuis E, Ballesteros E, Gacia E. 2012. Distribution and richness of aquatic plants across Europe and Mediterranean countries: Patterns, environmental driving factors and comparison with total plant richness. J. Veg. Sci 23 (5): 985–997. DOI: 10.1111/j.1654-1103.2012.01417.x.
Clarke GL. 1956. Elements of Ecology. Willey; Sons, INC. New York.
Clarke SJ, Wharton G. 2001. Sediment nutrient characteristics and aquatic macrophytes in lowland English rivers. Sci. Total Environ 266 (1-3): 103–112. DOI: 10.1016/s0048-9697(00)00754-3.
Cook CDK. 1996. Aquatic and Wetland Plants of India. Oxford University Press.
Currie DJ. 1991. Energy and large-scale patterns of animal-and plant-species richness.
Am. Nat 137 (1): 27–49.
Currie DJ, Mittelbach GG, Cornell HV, Field R, Guégan J-F, Hawkins BA, Kaufman D M, Kerr JT, Oberdorff T, O’Brien E. 2004. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol. Lett 7 (12): 1121–1134. DOI: 10.1111/j.1461-0248.2004.00671.x.
Davis M A, Grime JP, Thompson K. 2000. Fluctuating resources in plant communities: A general theory of invasibility. J. Ecol 88 (3): 528–534. 10.1046/j.1365-2745.2000.00473.x.
Di Musciano M, Zannini P, Ferrara C, Spina L, Nascimbene J, Vetaas OR, Bhatta KP, d’Agostino M, Peruzzi L, Carta A, Chiarucci A. 2021. Investigating elevational gradients of species richness in a Mediterranean plant hotspot using a published flora. Front. Biogeogr 13 (3) doi: 10.21425/F5FBG50007.
Engelhardt KAM, Ritchie ME. 2001. Effects of macrophyte species richness on wetland ecosystem functioning and services. Nature 411 (6838): 687–689. DOI: 10.1038/35079573.
Evans, K. L., J. J. D. Greenwood, and K. J. Gaston. 2005. Dissecting the species–energy relationship. Proceedings of the Royal Society B: Biological Sciences 272 (1577): 2155–2163. DOI: 10.1098/rspb.2005.3209.
Fernández-Aláez, Fernández-Aláez CM, García-Criado, García-Girón J. 2018. Environmental drivers of aquatic macrophyte assemblages in ponds along an altitudinal gradient. Hydrobiologia 812 (1): 79–98. DOI: 10.1007/s10750-016-2832-5.
Gacia E, Chappuis E, Lumbreras A, Riera JL, Ballesteros E. 2009. Functional diversity of macrophyte communities within and between Pyrenean lakes. J. Limnol 68 (1): 25-36.
Gacia E, Ballesteros E, Camarero L, Delgado O, Palau A., Riera JL, Catalan J. 1994. Macrophytes from lakes in the eastern Pyrenees: Community composition and ordination in relation to environmental factors. Freshw. Biol 32 (1): 73–81. DOI: 10.1111/j.1365-2427.1994.tb00867.x.
Gallardo, LI, Carnevali RP, Porcel EA, Poi ASG. 2017. Does the effect of aquatic plant types on invertebrate assemblages change across seasons in a subtropical wetland? Limnetica 36 (1): 87-98. DOI: 10.23818/limn.36.07.
Gasith A, Hoyer MV. 1998. Structuring role of macrophytes in lakes: Changing influence along lake size and depth gradients, In E. Jeppesen. M. Søndergaard. M. Søn-dergaard. and K. Christoffersen(eds.). The structuring role of submerged macrophytes in lakes. Ecological Studies. Springer, New York. 131. pp 381–392.
Gaston KJ, Blackburn TM. 2000. Pattern and Process in Macroecology. Wiley Online Library.
Ghimire MD, Dhakal KS, Saud DS. 2020. A Checklist of Wetland Flora Reported from Nepal. Department of Plant Resources, Kathmandu, Nepal.
Grau O, Grytnes J-A, Birks HJB. 2007. A comparison of altitudinal species richness patterns of bryophytes with other plant groups in Nepal, Central Himalaya. J. Biogeogr 34 (11): 1907–1915. DOI: 10.1111/j.1365-2699.2007.01745.x.
Grimaldo JT, Bini LM, Landeiro VL, O’Hare MT, Caffrey J, Spink A, Martins SV, Kennedy MP, Murphy KJ. 2016. Spatial and environmental drivers of macrophyte diversity and community composition in temperate and tropical calcareous rivers. Aquat. Bot 132: 49–61. DOI: 10.1016/j.aquabot.2016.04.006
Grytnes JA, Vetaas OR. 2002. Species richness and altitude: A comparison between null models and interpolated plant species richness along the Himalayan altitudinal gradient, Nepal. Am. Nat 159 (3): 294–304.
Harrison S. 1999. Local and regional diversity in a patchy landscape: Native, alien, and
endemic herbs on serpentine. Ecology 80 (1): 70–80.
Hussner A. 2009. Growth and photosynthesis of four invasive aquatic plant species in Europe. Weed Res 49 (5): 506–515. DOI: 10.1111/j.1365-3180.2009.00721.x.
Ikinci N, Bay?nd?r N. 2021. Spatial trends of Potamogetonaceae along an altitudinal gradient. Biologia 76 (1): 23–32. DOI: 10.2478/s11756-020-00596-7.
Jones JI, Li W, Maberly C. 2003. Area, altitude and aquatic plant diversity.
Ecography 26 (4): 411–420. DOI: 10.1034/j.1600-0587.2003.03554.x.
Kamimura VdeA, de Moraes PLR, Ribeiro HL, Joly CA, Assis MA. 2017. Tree diversity and elevational gradient: The case of Lauraceae in the Atlantic Rainforest. Flora (Ankara, Turkey) 234: 84–91. DOI: 10.1016/j.flora.2017.05.013
Kandel DR, Jenkins F. 2020. Ferns and Fern - Allies of Nepal. Department of Plant Resources, Kathmandu, Nepal.
Khatiwada JR, Zhao T, Chen Y, Wang B, Xie F, Cannatella DC, Jiang J. 2019. Amphibian community structure along elevation gradients in eastern Nepal Himalaya. BMC Ecology 19: 19. DOI: 10.1186/s12898-019-0234-z.
Kotze DC, O’Connor TG. 2000. Vegetation variation within and among palustrine wetlands along an altitudinal gradient in KwaZulu-Natal, South Africa. Plant Ecol. 146: 77-96. DOI: 10.1023/A:1009812300843.
Kreyling J, Schmid S, Aas G. 2015. Cold tolerance of tree species is related to the climate of their native ranges. Journal of Biogeography 42 (1): 156–166. DOI: 10.1111/jbi.12411.
Lacoul P. 2004. Aquatic macrophyte distribution in response to physical and chemical environment of the lakes along an altitudinal gradient in the Himalayas, Nepal. {Ph.D. Thesis}, Dalhouse University, Nova Scotia, {Canada}.
Lacoul P, Freedman B. 2006a. Relationships between aquatic plants and environmental factors along a steep Himalayan altitudinal gradient. Aquat. Bot. 84 (1): 3–16. DOI: 10.1016/j.aquabot.2005.06.011.
Lacoul P, Freedman B. 2006b. Recent observation of a proliferation of Ranunculus trichophyllus Chaix. In high-altitude lakes of the Mount Everest region. Arct. Antarct. Alp. Res 38 (3): 394–398. DOI: 10.1657/1523-0430(2006)38.
Li M, Feng J. 2015. Biogeographical interpretation of elevational patterns of genus diversity of seed plants in Nepal. PLoS One 10 (10): e0140992. DOI: 10.1371/journal.pone.0140992.
Liang, J, Ding Z, Lie G, Zhou Z, Singh PB, Zhang Z, Hu H. 2020. Species richness patterns of vascular plants and their drivers along an elevational gradient in the central Himalayas.Glob. Ecol. Conserv 24: e01279. DOI: 10.1016/j.gecco.2020.e01279.
Mandal TN, Gautam TP. 2010. Rehabilitation of macrophytes in Chimdi Lake of Sunsari, Nepal. Medha: A Multidisciplinary Journal 3: 72–78.
McCullagh P, Nelder JA. 2019. Generalized Linear Models. Routledge.
Mille-Lindblom C, Fischer H. Tranvik LJ. 2006. Litter-associated bacteria and fungi a comparison of biomass and communities across lakes and plant species. Freshw. Biol 51 (4): 730–741. DOI: 10.1111/j.1365-2427.2006.01532.x.
Murphy K, Carvalho P, Efremov A, Grimaldo JP, Molina-Navarro E, Davidson TA, Thomaz S M. 2020. Latitudinal variation in global range-size of aquatic macrophyte species shows evidence for a Rapoport effect. Freshw. Biol. 65 (9): 1622– 1640. DOI: 10.1111/fwb.13528.
Naqinezhad A, Jalili A, Attar F, Ghahreman A, Wheeler BD, Hodgson JG, Shaw SC, Maassoumi A. 2009. Floristic characteristics of the wetland sites on dry southern slopes of the Alborz Mts., N. Iran: The role of altitude in floristic composition. Flora: Morphol. Distrib. Funct. Ecol. Plants 204 (4): 254–269. DOI: 10.1016/j.flora.2008.02.004.
Nascimbene J, Marini L. 2015. Epiphytic lichen diversity along elevational gradients: Biological traits reveal a complex response to water and energy. J. Biogeogr 42 (7): 1222–1232. DOI: 10.1111/jbi.12493.
Niroula B, Singh, KLB. 2010. Contribution to aquatic macrophytes of Biratnagar and adjoining areas, Eastern Nepal. Ecoprint: 17: 23-34.
O’Brien EM. 2006. Biological relativity to water–energy dynamics. J. Biogeogr 33 (11): 1868–1888. DOI: 10.1111/j.1365-2699.2006.01534.x.
O’Brien EM, Whittaker RJ, Field R. 1998. Climate and woody plant diversity in southern Africa: Relationships at species, genus and family levels. Ecography 21 (5): 495–509. DOI: 10.1111/j.1600-0587.1998.tb00441.x.
Ohlemüller R, Wilson JB. 2000. Vascular plant species richness along latitudinal and altitudinal gradients: A contribution from New Zealand temperate rainforests. Ecol. Lett 3 (4): 262–266. DOI: 10.1046/j.1461-0248.2000.00151.x.
Önol B, Bozkurt D, Turuncoglu UU, Sen OL, Dalfes HN. 2014. Evaluation of the twenty-first century RCM simulations driven by multiple GCMs over the Easter Mediterranean–Black Sea region. Clim. Dyn 42 (7-8): 1949–1965. DOI: 10.1007/s00382- 013-1966-7.
Ormerod SJ, Rundle SD, Wilkinson SM, Daly GP, Dale KM, Juttner I. 1994. Altitudinal trends in the diatoms, bryophytes, macroinvertebrates and fish of a Nepalese river system. Freshw. Biol 32 (2): 309–322. DOI: 10.1111/j.1365-2427.1994.tb01128.x.
Pandey B, Nepal N, Tripathi S, Pan K, Dakhil MA, Timilsina A, Justine MF, Koirala S, Nepali KB. 2020. Distribution pattern of gymnosperms’ richness in Nepal: Effect of environmental constrains along elevational gradients. Plants 9 (5): 625. DOI: 10.3390/plants9050625.
Press JR, Shrestha KK, Sutton DA. 2000. Annotated checklist of the flowering plants of Nepal. Natural History Museum, London. pp 430.
Pulido C, Riera JL, Ballesteros E, Chappuis E, Gacia E. 2015. Predicting aquatic macrophyte occurrence in soft-water oligotrophic lakes (Pyrenees mountain range). J. Limnol. 74 (1): 143-154. DOI: 10.4081/jlimnol.2014.965.
R Core Team. 2022. R: A Language and Environment for Statistical Computing.
Rahbek C. 1995. The elevational gradient of species richness: A uniform pattern? Ecography 18 (2): 200–205.
Rajbhandari KR, Rai SK. 2017. A Handbook of the Flowering Plants of Nepal.
Department of Plant Resources, Kathmandu, Nepal.
Rajbhandari KR, Rai SK. 2019. A Handbook of the Flowering Plants of Nepal.
Department of Plant Resources, Kathmandu, Nepal.
Rajbhandari KR, Rai SK, Chhetri R. 2021. A Handbook of the Flowering Plants of Nepal.
Department of Plant Resources, Kathmandu, Nepal.
Rajbhandari KR, Rai SK, Chhetri R. 2022. A Handbook of the Flowering Plants of Nepal.
Department of Plant Resources, Kathmandu, Nepal.
Ramachandra TV, Sudarshan PB, Mahesh MK, Vinay S. 2018. Spatial patterns of heavy metal accumulation in sediments and macrophytes of Bellandur wetland, Bangalore. J. Environ. Manage 206: 1204–1210. DOI: 10.1016/j.jenvman.2017.10.014.
Rawat DS, Bagri AS, Parveen M, Nautiyal M, Tiwari P, Tiwari JK. 2021. Pattern of species richness and floristic spectrum along the elevation gradient: A case study from western Himalaya, India. Acta Ecol. Sin 41 (6): 545-551. DOI: 10.1016/j.chnaes.2021.03.012.
Rolon A, Maltchik L. 2006. Environmental factors as predictors of aquatic macrophyte richness and composition in wetlands of southern Brazil. Hydrobiologia 556: 221–231. DOI: 10.1007/s10750-005-1364-1.
Sah JP, Singh R, Bhatta N. (2003). Floristic diversity and use of plants in Ghodaghodi lake area, Nepal. J Nat Hist Mus 21: 243-266.
Sculthorpe CD. 1985. The biology of aquatic vascular plants. Konigstein.
Sharma BK. 2014. Bioresources of Nepal. Active Printing Press Pvt. Ltd., Kathmandu,
Shrestha AB, Aryal R. 2011. Climate change in Nepal and its impact on Himalayan glaciers. Reg. Environ. Change 11 (S1): 65–77. 10.1007/s10113-010-0174-9.
Shrestha BB. 2016. Invasive alien plant species in Nepal. Frontiers of Botany. 269–284.
Shrestha GL, Upadhyay MP.1999. Wild relatives of cultivated rice crops in Nepal. In: Shrestha R, Shrestha B (eds.). Wild relatives of cultivated plants in Nepal Proceedings of the National Conference, Kathmandu, 2-4 June 1999. GEM-Nepal. 72-82.
Shrestha KK, Bhatt P, Bhandari P. 2022. Plants of Nepal (Gymnosperms and Angiosperms: Cycadaceae - Betulaceae). Heritage Publishers and Distributors Pvt. Ltd. ISBN. 978-9937-774-52-8.
Siwakoti M, Karki JB. 2009. Conservation status of Ramsar sites of Nepal Tarai: An overview. BOTOR J. Plant Sci 6: 76–84. DOI: 10.3126/botor.v6i0.2914.
Siwakoti M, Shrestha BB, Devkota A, Shrestha UB, Thapaparajuli RB, Sharma KP. 2016. Assessment of the effects of climate change on the distribution of invasive alien plant species in Nepal. In: Building Knowledge for Climate Resilience in Nepal: Research Brief. Nepal Academy of Science and Technology, Kathmandu 5–8.
Stefanidis K, Sarika M, Papastegiadou E. 2019. Exploring environmental predictors of aquatic macrophytes in water-dependent Natura 2000 sites of high conservation value: Results from a long-term study of macrophytes in Greek lakes. Aquat. Conserv.: Mar. Freshw. Ecosyst 29 (7): 1133-1148. DOI: 10.1002/aqc.3036.
Stevens GC. 1992. The elevational gradient in altitudinal range: An extension of Rapoport’s latitudinal rule to altitude. Am. Nat. 140 (6): 893–911. DOI: 10.1086/285447.
Súarez YR, Ferreira FS, Tondato KK. 2013. Assemblage of fish species associated with aquatic macrophytes in Porto Murtinho Pantanal, Mato Grosso do Sul, Brazil. Biota Neotrop 13 (2): 182–189. DOI: 10.1590/S1676-06032013000200017.
Sun J, Hunter PD, Tyler AN, Willby NJ. 2019. Lake and catchment-scale determinants of aquatic vegetation across almost 1,000 lakes and the contrasts between lake types. J. Biogeogr 46 (5): 1066–1082. DOI: 10.1111/jbi.13557.
Takamura N, Kadono Y, Fukushima M, Nakagawa M, Kim BH. 2003. Effects of aquatic macrophytes on water quality and phytoplankton communities in shallow lakes. Ecol. Res 18: 381–395. DOI: 10.1046/j.1440-1703.2003.00563.x.
Thomaz SM, Cunha ER da. 2010. The role of macrophytes in habitat structuring in aquatic ecosystems: Methods of measurement, causes and consequences on animal assemblages’ composition and biodiversity. Acta Limnol. Bras 22 (2): 218–236. DOI: 10.4322/actalb.02202011.
Thomaz, S. M., R. P. Mormul, and T. S. Michelan. 2015. Propagule pressure, invasibility of freshwater ecosystems by macrophytes and their ecological impacts: A review of tropical freshwater ecosystems. Hydrobiologia 746 (1): 39–59.
Tilman D. 1982. Resource Competition and Community Structure. Princeton University Press.
Tiwari S, Siwakoti M, Adhikari B, Subedi K. 2005. An Inventory and Assignment of Invasive Alien Plant Species of Nepal. IUCN, The World Conservation Union, Nepal.
Toivanen M, Hjort J, Heino J, Tukiainen H, Aroviita J, Alahuhta J. 2019. Is catchment geodiversity a useful surrogate of aquatic plant species richness? J. Biogeogr 46 (8): 1711–1722. DOI: 10.1111/jbi.13648.
Trumbore, S. E., O. A. Chadwick, and R. Amundson. 1996. Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change. Science 272 (5260): 393–396. DOI:10.1126/science.272.5260.393.
Vetaas OR, Grytnes JA. 2002. Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Glob. Ecol. Biogeogr 11 (4): 291–301. DOI: 10.1046/j.1466-822X.2002.00297.x.
Vetaas OR, Paudel KP, Christensen M. 2019. Principal factors controlling biodiversity along an elevation gradient: Water, energy and their interaction. J. Biogeogr 46 (8): 1652–1663. DOI: 10.1111/jbi.13564.
Weaver JE, Clements FE. 1938. Plant Ecology. McGraw-Hill Book Company, New York; London.
World Flora Online (https://worldfloraonline.org.)
Wu Y, Yang Q, Wen Z, Xia L, Zhang Q, Zhou H. 2013. What drives the species richness patterns of non-volant small mammals along a subtropical elevational gradient? Ecography 36 (2): 185–196. DOI: 10.1111/j.1600-0587.2011.07132.x.
Zedler JB, Kercher S. 2005. Wetland resources: Status, trends, ecosystem services, and restorability. Annu Rev. Environ Resour 30: 39–74. DOI: 10.1146/annurev.energy.30.050504.144248.