The phenotypic and genetic diversity test of several inbred lines on the 7th generation of melon (Cucumis melo)

##plugins.themes.bootstrap3.article.main##

HERI KUSTANTO

Abstract

Abstract. Kustanto H. 2023. The phenotypic and genetic diversity test of several inbred lines on the 7th generation of melon (Cucumis melo). Biodiversitas 24: 2623-2629. The needs for melon (Cucumis melo L.) keep increasing year by year. Some efforts to increase the quality of melon have been carried out to obtain better quality and quantity through plant breeding programs. Providing new melon inbred lines with different phenotypic and genotypic traits is very important in assembling melon hybrid varieties with new genetic characteristics, potentially production superior melon varieties. The study’s objective was to find out the genetic diversity of the tested melon genotypes and to obtain inbred lines of melon, which are the potential to be developed as superior hybrid varieties. The inbred lines of melons showed that the diversity coefficient values of morphological traits ranged from 0.57 to 1.0. There are 3 Groups, namely Group I, II, and III. Group I comprises two genotypes: MJ 34 and HHX 015. Group II is divided into 2, Group A and B. Gaboup A comprises three genotypes: MJ 25, Amanda variety as the standard of comparison, and MO 29, while Group B has one genotype: HHA 02. Group III comprises three genotypes: MSO 12, MSP 13, and HHAL 01. The traits are as follows: leaf length, leaf width, fruit length, fruit diameter, and the fruit flesh thickness have closely related to yield per plant.

##plugins.themes.bootstrap3.article.details##

References
Ali M, Kuswanto, Kustanto H. 2019. Phenomenon of inbreeding depression on maize in perspective of the quran. Agrivita Jurnal of Agriculture Science 41(2): 385–393. Doi.org/10.17503/agrivita.v41i2.2022.
Amzeri A, Badami K, Pawana G, Syah MA, Daryono BS. 2021. Phenotypic and genetic diversity of watermelon (Citrullus lanatus) in East Java, Indonesia. Biodiversitas, 22(11): 5223–5230. Doi.org/10.13057/biodiv/d221161
Anshuman V, Dixit NN, Sharma SK, Marker S. 2013. Studies on heritability and genetic advance estimates in maize genotypes. Bioscience Discovery 4(2): 165–168.
Barzegar T, Heidaryan N, Lotfi H, Ghahremani Z. 2018. Yield, fruit quality and physiological responses of melon cv. Khatooni under deficit irrigation. Adv. Hort. Sci. 32(4): 451-458. Doi.org/10.13128/ahs-22456.
Bekele A, Rao TN. 2014. Estimates of heritability, genetic advance and correlation study for yield and it’s attributes in maize (Zea mays L.). Journal of Plant Sciences 2(1): 1–4. Doi.org/10.11648/j.jps. 20140201.11
Setiawan AB, Teo CH, Kikuchi S, Sassa H, Kato K, Koba T. 2018. Cytogenetic variation among Cucumis accessions revealed by fluorescence in situ hybridization using ribosomal RNA genes as the probes. Chromosome Science 21: 67-73
Cao Y, Diao Q, Lu S, Zhang Y, Yao D. 2022. Comparative transcriptomic analysis of powdery mildew resistant and susceptible melon inbred lines to identify the genes involved in the response to Podosphaera xanthii infection. Scientia Horticulturae 304: 1-10. Doi.org/10.1016/j.scienta.2022.111305.
Dantas ACA, Ricarte AO, Costa JM, Antônio RP, Tomaz FLS, Nunes GHS. 2023. Genetic control of quality melon traits. Ciência Rural 53(7): 1-9.
Chikh-Rouhou H, Gómez-Guillamón ML, González V. Sta-Baba R, Garcés-Claver A. 2021. Cucumis melo L. Germplasm in tunisia: Unexploited sources of resistance to Fusarium Wilt. Horticulturae 7(8):1-14. Doi.org/10.3390/horticulturae7080208.
Silveira TDO, Marques MM, Amorim GTDS , Carvalho MGDC , Junior PCD. 2022. Genetic diversity among bitter melon genotypes assessed through morpho-agronomic variables. Rev. Caatinga 35 (4): 755 – 763.
Cui L, Siskos L, Wang C, Schouten HJ, Visser RGF, Bai Y. 2022. Breeding melon (Cucumis melo) with resistance to powdery mildew and downy mildew. Horticultural Plant Journal 8(5): 545–561. Doi.org/10.1016/j.hpj.2022.07.006.
Daryono BS, Subiastuti AS, Fatmadanni A, Sartika D. 2019. Phenotypic and genetic stability of new indonesian melon cultivar (Cucumis melo L. ‘Melonia’) based on ISSR markers. Biodiversitas 20(4): 1069–1075. Doi.org/10.13057/biodiv/d200419
Duong TT, Dung TP, Tanaka K, Nhi PTP, Shigita G, Imoh ON, Nishida H, Kato K. 2021. Distribution of two groups of melon landraces and inter-group hybridization enhanced genetic diversity in Vietnam. Breeding Science 574: 564–574. Doi.org/10.1270/jsbbs.20090
Sakulphrom S, Chankaew S, Sanitchon J. 2018. Genetics Analysis and Heritability of Fruit Characters in Muskmelon (Cucumis melo L.) Using Extreme Parental Differences. AGRIVITA Journal of Agricultural Science 40(1): 1–7.
Ezura H. 2001. Genetic engineering of melon (Cucumis melo L.). In Plant Biotechnology 18(1) 1-6. Doi.org/10.5511/plantbiotechnology.18.1
Fehr WR. 1994. Principles of Cultivar Development. Iowa State University. Ames. 536p.
Fernand D, Milagrosa S, Francisco C, Francisco M. 2018. Biostimulant activity of Trichoderma saturnisporum in melon (Cucumis melo). HortScience 53(6): 810–815. Doi.org/10.21273/HORTSCI13006-18
Kustanto H, Sugiharto AN, Basuki N, Kasno A. 2012. Study on Heterosis and Genetic Distance of S 6 Inbred Lines of Maize. J. Agric. Food. Tech 2(8): 118–125.
Lester G. 1997. Nutritional quality and health functionality. In HortTechnology. Pp. 222–227.
Nhi PTP, Akashi Y, Hang TTM, Tanaka K, Aierken Y, Yamamoto T, Nishida H, Long C, Kato K. 2010. Genetic diversity in Vietnamese melon landraces revealed by the analyses of morphological traits and nuclear and cytoplasmic molecular markers. Breeding Science 60(3): 255–266. Doi.org/10.1270/jsbbs.60.255
Olakojo SA, Olaoye G. 2011. Correlation and heritability estimates of maize agronomic traits for yield improvement and Striga asiatica (L.) kuntze tolerance. African Journal of Plant Science 5(6): 365–369.
Pantalone VR, Burton JW, Carter JTE. 1996. Soybean fibrous root heritability and genotypic correlations with agronomic and seed quality traits. Crop Sci. 36: 1120–1125.
Pitrat M. 2013. Phenotypic diversity in wild and cultivated melons (Cucumis melo). Plant Biotechnology 30(3): 273–278. Doi.org/10.5511/plantbiotechnology.13.0813a
Poehlman JM. 1983. Breeding Field Crops. Second ed. The Avi Publishing Company, Inc. Westport. 486p.
Saputra HE, Syukur M., Suwarno WB, Sobir. 2022. Diversity and similarity of melon (Cucumis melo L.) groups and determination of distinguishing morphological characters. Biodiversitas, 23(12): 6254–6261. Doi.org/10.13057/biodiv/d231221
Soltani F, Akashi Y, Kashi A, Zamani Z, Mostofi Y, Kato K. 2010. Characterization of Iranian melon landraces of Cucumis melo L. Groups Flexuosus and Dudaim by analysis of morphological characters and random amplified polymorphic DNA. Breeding Science 60(1): 34–45. Doi.org/10.1270/jsbbs.60.34
Yani RH, Khumaida N, Ardie SW, Syukur M. 2018. Analysis of Variance, Heritability, Correlation and Selection Character of M 1 V 3 Generation Cassava (Manihot esculenta Crantz) Mutants. Journal of Agricultural Science 40(1): 74–79.
Yashiro K, Iwata H, Akashi Y, Tomita KO, Kuzuya M, Tsumura Y, Kato K. 2005. Genetic relationship among East and South Asian melon (Cucumis melo L.) revealed by AFLP analysis. Breeding Science 55(2): 197–206. Doi.org/10.1270/jsbbs.55.197.