DNA barcoding Clithon sp. (Gastropoda: Neritidae) from Badur Beach, Madura, Indonesia, based on COI gene molecular marker

##plugins.themes.bootstrap3.article.main##

INTAN SALSABILA DJOEMHARSJAH
RENI AMBARWATI
DWI ANGGOROWATI RAHAYU

Abstract


Abstract. Djoemharsjah IS, Ambarwati R, Rahayu DA. 2023. DNA barcoding Clithonsp. (Gastropoda: Neritidae) from Badur Beach, Madura, Indonesia, based on COI gene molecular marker. Biodiversitas 24: xxxx. Neritidae is polymorphic with various shell colors and patterns; therefore, they were doubts about the identifying species from the genus Clithon, namely Clithon sp. from Badur Beach of Madura Island, Sumenep District, East Java Province, Indonesia. In addition, DNA barcoding could provide genetic information using short DNA sequences to quickly and precisely identify species. This study aimed to identify the genus Clithon sp. from Badur Beach, based on Cytochrome Oxidase subunit I(COI) genes and analysis of phylogenetic relationships. The research methods include sampling, sample preservation, morphological identification of species, DNA isolation, amplification, electrophoresis, and sequencing using the Sanger method with genetic analysis using bioinformatics software. The results of COI barcode identification obtained a DNA sequence length of 490bp with a similarity value of the three Clithon sp. samples between 96.75 to 98.97%. The identification with the Barcode of Life Data System consisted of three variations of nucleotide bases, and the average value of the genetic distance with the in-group was 1.74% as Clithon sp. The Phylogenetic tree Clithon sp. from Badur Beach, was in the same clade as Clithon sowerbianum Récluz 1843 and Clithon mertonianum Récluz 1843 with the Neighbor-Joining Tree and Maximum Likelihood methods with bootstrap values between 96-100. Therefore, the COI barcode DNA markers analysis successfully identified Clithon sp. from Badur Beach, Madura, Indonesia as C. sowerbianum.


##plugins.themes.bootstrap3.article.details##

References
Antil S, Abraham JS, Sripoorna S, Maurya S, Dagar J, Makhija S, Toteja R. 2022. DNA barcoding an effective tool for species identification: a review. Molecular Biology Reports 50: 1-15. DOI: 10.1007/s11033-022-08015-7.
Aziz R, Sen P, Beura PK, Das S, Tula D, Dash M, Ray SK. 2022. Incorporation of transition to transversion ratio and nonsense mutations improves the estimation of the number of synonymous and non-synonymous sites in codons. DNA Research 29 (4): 1-8. DOI: 10.1093/dnares/dsac023.
Bhattacharjee A, Bayzid M. 2020. Machine learning based imputation techniques for estimating phylogenetic trees from incomplete distance matrices. BMC genomics 21 (1): 1-14. DOI: 10.1186/s12864-020-06892-5.
Bhattacharjee MJ, Laskar BA, Dhar B, Ghosh SK. 2012. Identification and Re-Evaluation of Freshwater Catfishes through DNA barcoding. PLoS ONE 7 (11): e49950. DOI: 10.1371/journal.pone.0049950.
Bingpeng X, Heshan L, Zhilan Z, Chunguang W, Yanguo W, Jianjun W. 2018. DNA barcoding for identification of fish species in the Taiwan Strait. PloS one 13 (6): e0198109. DOI: 10.1371/journal.pone.0198109.
Cai Y, Zhang L, Wang Y, Liu Q, Shui Q, Yue B, Zhang Z, Li J. 2016. Identification of deer species (Cervidae, Cetartiodactyla) in China using mitochondrial cytochrome c oxidase subunit I (mtDNA COI). Mitochondrial DNA Part A DNA Mapping. Seq Anal 27 (6): 4240-4243. DOI: 10.3109/19401736.2014.1003919.
Cen X, Zhang G, Liu H, Yao G, Xiong P, He M, Liu W. 2023. Analysis of genetic diversity in two different shell colors of the giant triton snail (Charonia tritonis) based on mitochondrial COI sequences. Front Mar Sci 9: 1066750. DOI: 10.3389/fmars.2022.1066750.
Chiu YW, Bor H, Tan MS, Lin HD, Jean CT. 2013. Phylogeography and genetic differentiation among populations of the moon turban snail Lunella granulata Gmelin 1791 (Gastropoda: Turbinidae). International journal of molecular sciences 14 (5): 9062-9079. DOI: 10.3390/ijms14059062.
Dharma B. 2005. Recent and Fossil Indonesian Shells, Hackenheium: Conchbooks.
Djoemharsjah SI, Isnaningsih RN, Ambarwati R. 2022. Surabaya: Variasi Morfologi dan Kekerabatan keong Neritidae di Pantai Badur, Madura. 4 Februari. [Indonesian].
Dominova IN, Zhukov VV. 2022. Mollusc Crystallins: Physical and Chemical Properties and Phylogenetic Analysis. Diversity 14 (10): 827. DOI: 10.3390/d14100827.
Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3 (5): 294-299.
Hesterberg T. 2015. Bootstrap Methods and Permutation tetes (Issue February).
Hylleberg J. 2000. Molluscs Collected by in Vietnam and Cambodia. Phuket Marine Biological Center Special Publication 21 (1): 519-573.
Jahn K, Kuipers J, Beerenwinkel N. 2016. Tree inference for single cell data. Genome biology 17 (1): 1-17. DOI: 10.1186/s13059-016-0936-x.
Jannah M, Rahayu DA. 2019. Indonesian Animal and Plant DNA barcodes. DOI: 10.17605/OSF.IO/TY7E5. [Indonesian].
Juniar AE, Ambarwati R, Rahayu DA. 2021. Genetic identification of clithon oualaniense (Gastropoda: Neritidae) from Madura, Indonesia. AACL Bioflux 14 (2): 1046-1056. DOI: 2021.1046-1056.
Kapli P, Yang Z, Telford MJ. 2020. Phylogenetic tree building in the genomic age. Nature Reviews Genetics 21 (7): 428-444. DOI: 10.1038/s41576-020-0233-0.
Killburn R. 2000. Shallow Water Archaeogastropods of South East Asia: An Introduction. Phuket Marine Biological Center Special Publication 21 (3): 595-601.
Limpiti T, Amornbunchornvej C, Intarapanich A, Assawamakin A, Tongsima S. 2014. iNJclust: iterative neighbor-joining tree clustering framework for inferring population structure. IEEE/ACM transactions on computational biology and bioinformatics 11 (5): 903-914. DOI: 10.1109/TCBB.2014.2322372.
Markovi? V, Tomovi? J, Ili? M, Kra?un-Kolarevi? M, Novakovi? B, Paunovi? M, Nikoli? V. 2014. Distribution of the species of Theodoxus Montfort, 1810 (Gastropoda: Neritidae) in Serbia: An overview. Acta Zoologica Bulgarica 66 (4): 477-484.
Morrison DA. 2016. Genealogies: Pedigrees and phylogenies are reticulating networks not just divergent trees. Evolutionary biology 43: 456-473. DOI: 10.1007/s11692-016-9376-5.
Ng TH, Tan SK, Wong WH, Meier R, Chan SY, Tan HH, Yeo DC. 2016. Molluscs for sale: assessment of freshwater gastropods and bivalves in the ornamental pet trade. PLoS ONE 11 (8): e0161130. DOI: 10.1371/journal.pone.0161130.
Park SY, Patnaik BB, Kang SW, Hwang HJ, Chung JM, Song DK, Lee YS. 2016. Transcriptomic analysis of the endangered Neritid species Clithon retropictus. De novo assembly, functional annotation, and marker discovery Genes 7 (7): 1-19. DOI: 10.3390/genes7070035.
Rabi C, Rilov G, Morov AR, Guy Haim T. 2020. First record of the red sea gastropod Nerita sanguinolenta menke, 1829 (Gastropoda: Cycloneritida: Neritidae) from the israeli mediterranean coast. BioInvasions Records 9 (3): 496-503. DOI: 10.3391/bir.2020.9.3.06.
Saleky DPO, Leatemia SF, Pattiasina T, Isma I, D Pangaribuan R, A Welliken M, HP Melmambessy E, Dailami M. 2020. Analisis Pola Pertumbuhan dan Pendekatan DNA barcoding untuk Identifikasi Turbo stenogyrus P. Fischer 1873 (Mollusca: Gastropoda). Biotropika Journal of Tropical Biology 8 (2): 79-86. DOI: 10.21776/ub.biotropika.2020.008.02.03.
Sari SYP, Ambarwati R, Rahayu DA. 2021. Molecular characteristics of Donax faba (Bivalvia: Donacidae) from Nepa Beach, Madura, based on Cytochrome Oxidase Subunit I gene sequences. AACL Bioflux 14 (4): 2416-2426. DOI: 2021.2416-2426.
Tan SK, Clements R. 2008. Taxonomy and distribution of the Neritidae (Mollusca: Gastropoda) in Singapore. Zoological Studies 47 (4): 481–494.
Yang Z, Rannala B. 2012. Molecular phylogenetics: principles and practice. Nature reviews genetics 13 (5): 303-314. DOI: 10.1038/nrg3186.
Zein MSA, Prawiradilaga DM. 2013. Indonesian Fauna barcode DNA, Prenada Media. [Indonesian].

Most read articles by the same author(s)