Nematode functional traits and community structure change from river to the terrestrial border in Segara Anakan Mangrove, Indonesia

##plugins.themes.bootstrap3.article.main##

ARDHINI RIN MAHARNING
ERWIN RIYANTO ARDLI
ROMANUS EDY PRABOWO

Abstract

Abstract. Maharning AR, Ardli ER, Prabowo RE. 2023. Nematode functional traits and community structure change from river to the terrestrial border in Segara Anakan Mangrove, Indonesia. Biodiversitas 24: 2434-2446. We intended to explore the spatial distribution of nematode functional traits and community structure in Segara Anakan Mangrove, Indonesia. Samples were retrieved from 14 stations, extending from the river to the area adjacent to terrestrial forest. We used taxonomic and functional trait identification, covering body shape, length, tail shape, feeding type, and life history as independent traits, and combined traits by collecting traits describing individual nematodes. The principal component analysis suggested that predatory or omnivorous or long-size nematodes mainly inhabited stations adjacent to the terrestrial forest but were unclear for the mid-stations. There were 29 combined traits and 38 genera of nematodes observed. The detrended correspondence analysis revealed that nematode compositional changes from the river to the terrestrial adjacent area were clearer for the combined traits and nematode genera. Seven combined traits and 12 genera inhabited only the particular stations of the study site. The common nematodes were slender, 1-2 mm long, elongated filiform tails, non-selective deposit feeders, and very tolerant to pollutants, which lived in almost all stations (92.86%). The genus relative abundance (>10%) included Anoplostoma, Eubostrichus, and Chromadorina. The results suggest that distance from the river might regulate the habitability of nematodes, in which nematode functional traits play roles.

##plugins.themes.bootstrap3.article.details##

References
Alves AS, Caetano A, Costa JL, Costa MJ, Marques JC. 2015. Estuarine intertidal meiofauna and nematode communities as indicator of ecosystem's recovery following mitigation measures. Ecol Indic 54: 184-196. DOI: 10.1016/j.ecolind.2015.02.013.
Andriuzzi WS, Wall DH. 2018. Grazing and resource availability control soil nematode body size and abundance–mass relationship in semi-arid grassland. J Anim Ecol 87 (5): 1407-1417. DOI: 10.1111/1365-2656.12858.
Ardli ER, Yuwono E, Purwanto AD. 2022. Land cover changes and impacts of massive siltation on the Mangrove Segara Anakan Lagoon System Cilacap Indonesia. J Ecol Eng 23 (7): 29-41. DOI: 10.12911/22998993/149821.
Aswathy N, Athira A, Krishnapriya P, Jima M, Vijay A, Nandan B, Krishnan K. 2017. Functional trait analysis of meiobenthic nematodes in the Arctic Kongsfjord. J Aquat Biol Fish 5: 65-78.
Awaludin A, Zainuri M, Sugianto DN. 2017. Pemetaan batimetri dan sedimen dasar Segara Anakan Kabupaten Cilacap. Jurnal Oseanografi 6 (3): 396-404. [Indonesian]
Bhadury P, Mondal N, Ansari KG, Philip P, Pitale R, Prasade A, Nagale P, Apte D. 2015. Checklist of free-living marine nematodes from intertidal sites along the Central West Coast of India. J Biodivers Data 11 (2): 1605. DOI: 10.15560/11.2.1605.
Bongers T. 1990. The maturity index: An ecological measure of environmental disturbance based on nematode species composition. Oecologia 83 (1): 14-19. DOI: 10.1007/BF00324627.
Brustolin MC, Nagelkerken I, Fonseca G. 2018. Large-scale distribution patterns of mangrove nematodes: A global meta-analysis. Ecol Evol 8 (10): 4734-4742. DOI: 10.1002/ece3.3982.
Cai L, Fu S, Zhou X, Tseng LC, Hwang JS. 2020. Benthic meiofauna with emphasis on nematode assemblage response to environmental variation in the intertidal zone of the Danshuei River estuary, northwest Taiwan. Ecol Res 35 (5): 857-870. DOI: 10.1111/1440-1703.12159.
Chinnadurai G, Fernando OJ. 2007. Meiofauna of mangroves of the southeast coast of India with special reference to the free-living marine nematode assemblage. Estuar Coast Shelf Sci 72: 329-336. DOI: 10.1016/j.ecss.2006.11.004.
Ferris H, Bongers T, De Goede RGM. 2001. A framework for soil food web diagnostics: Extension of the nematode faunal analysis concept. Appl Soil Ecol 18 (1): 13-29. DOI: 10.1016/S0929-1393(01)00152-4.
Ferris H. 2010. Form and function: Metabolic footprints of nematodes in the soil food web. Eur J Soil Biol 46 (2): 97-104. DOI: 10.1016/j.ejsobi.2010.01.003.
Forge TA, Kimpinski J. 2008. Nematodes. In: Carter MR, Gregorich EG (eds.). Soil Sampling and Methods of Analysis (2nd ed, pp. 415–425). CRC Press, Boca Raton, USA. DOI: 10.1201/9781420005271.ch33.
Fu S, Rao Y, Chen X, Zhou X, Wu C, Li X, Peng W, Cai L. 2021. Comparison of benthic nematode assemblages in native mangrove forest and exotic mangrove plantations (Sonneratia apetala Buch-Ham) along the South China Coast. Mar Pollut Bull 166 (112249): 1-10. DOI: 10.1016/j.marpolbul.2021.112249.
Gabriela V, Pastor dWC. 2020. Increased biomass of free-living marine nematodes may be indicative of disturbances in the ecosystem of the San Antonio bay. Open J Environ Biol 5 (1): 001-006. DOI: 10.17352/ojeb.000014.
Ghosh M, Mandal S. 2021. Disentangling the effect of seasonal dynamics on meiobenthic community structure from River Matla of Sundarbans Estuarine System, India. Front Mar Sci 8 (671372): 1-21. DOI: 10.3389/fmars.2021.671372.
Handoyo G, Suryoputro AAD. 2015. Konversi tinggi pasang surut di perairan Cilacap terhadap energi yang dihasilkan. J Kelaut Tropis 18 (2): 112-120. DOI: 10.14710/jkt.v18i2.522.
Hed?nec P, Zheng H, Pessanha Siqueira D, Lin Q, Peng Y, Kappel Schmidt I, Guldberg Frøslev T, Kjøller R, Rousk J, Vesterdal L. 2023. Tree species traits and mycorrhizal association shape soil microbial communities via litter quality and species mediated soil properties. For Ecol Manag 527 (120608): 1-15. DOI: 10.1016/j.foreco.2022.120608.
Hua E, Zhu Y, Huang D, Liu X. 2021. Are free-living nematodes effective environmental quality indicators? Insights from Bohai Bay, China. Ecol Indic 127 (107756): 1-17. DOI: 10.1016/j.ecolind.2021.107756.
Hunt S, Jones HFE. 2019. Sediment grain size measurements are affected by site-specific sediment characteristics and analysis methods: Implications for environmental monitoring implications for environmental monitoring. N Z J Mar Freshwater Res 53 (2): 244-257. DOI: 10.1080/00288330. 2018.1553192.
Liao JX, Wei CL, Yasuhara M. 2020. Species and functional diversity of deep-sea nematodes in a high energy submarine Canyon. Front Mar Sci 7 (591): 1-18. DOI: 10.3389/fmars.2020.00591.
Liu T, Hu F, Li H. 2019. Spatial ecology of soil nematodes: Perspectives from global to micro scales. Soil Biol Biochem 137 (1): 1-9. DOI: 10.1016/j.soilbio.2019.107565.
Luan L, Jiang Y, Cheng M, Dini-Andreote F, Sui Y, Xu Q, Geisen S, Sun B. 2020. Organism body size structures the soil microbial and nematode community assembly at a continental and global scale. Nat Commun 11 (1): 1-11. DOI: 10.1038/s41467-020-20271-4.
Maharning AR, Ardli ER, Prabowo RE. 2022. Diversitas nematoda mangrove segara anakan. Prosiding Seminar Nasional dan Call for Papers: Pengembangan Sumbar Daya Perdesaan dan Kearifan Lokal Berkelanjutan XI. Universitas Jenderal Soedirman, Purwokerto, Indonesia, 10-17. [Indonesian]
Majdi N, Traunspurger W, Fueser H, Gansfort B, Laffaille P, Maire A. 2019. Effects of a broad range of experimental temperatures on the population growth and body-size of five species of free-living nematodes. J Therm Biol 80: 21-36. DOI: 10.1016/j.jtherbio.2018.12.010.
Marella TK, Bhattacharjya R, Tiwari A. 2021. Impact of organic carbon acquisition on growth and functional biomolecule production in diatoms. Microb Cell Factories 20 (1): 1-13. DOI: 10.1186/s12934-021-01627-x.
Matsui N, Meepol W, Chukwamdee J. 2015. Soil organic carbon in mangrove ecosystems with different vegetation and sedimentological conditions. J Mar Sci Eng 3 (4): 1404-1424. DOI: 10.3390/jmse3041404.
Mitwally HM, Fleeger JW. 2016. A test of biological trait analysis with nematodes and an anthropogenic stressor. Environ Monit Assess 188 (3): 1-12. DOI: 10.1007/s10661-016-5128-3.
Mitwally HM. 2022. A comparison of physical disturbance and pollution stressors in sandy beaches using nematode functional biological traits. J Coast Conserv 26 (4): 1-20. DOI: 10.1007/s11852-022-00884-1.
Mueller MT, Fueser H, Höss S, Traunspurger W. 2020. Species-specific effects of long-term microplastic exposure on the population growth of nematodes, with a focus on microplastic ingestion. Ecol Indic 118 (106698): 1-7. DOI: 10.1016/j.ecolind.2020.106698.
Navarrete A de J, Aramayo V, Davidson AM, Costa AC. 2020. Free-living marine nematodes diversity at Ponta Delgada-São Miguel (Azores archipelago, North-East Atlantic Ocean): first results from shallow soft-bottom habitats. Acoreana 11: 43-55. DOI: 10.1101/2020.09.09.289918.
Pereira TJ, Gingold R, Villegas ADM, Rocha-Olivares A. 2018. Patterns of spatial variation of meiofauna in Sandy Beaches of Northwestern Mexico with contrasting levels of disturbance. Thalassas 34 (1): 53-63. DOI: 10.1007/s41208-017-0038-x.
Pinto TK, Austen MCV, Warwick RM, Somerfield PJ. 2013. Nematode diversity in different microhabitats in a mangrove region Nematode. Mar Ecol 34: 257-268. DOI: 10.1111/maec.12011.
Ptatscheck C, Traunspurger W. 2020. The ability to get everywhere: Dispersal modes of free-living, aquatic nematodes. Hydrobiologia 847 (17): 3519-3547. DOI: 10.1007/s10750-020-04373-0.
Ridall A, Ingels J. 2021. Suitability of free-living marine nematodes as bioindicators?: Status and future considerations. Front Mar Sci 8 (685327): 1-16. DOI: 10.3389/fmars.2021.685327.
Sahraeian N, Sahafi HH, Mosallanejad H, Ingels J, Semprucci F. 2020. Temporal and spatial variability of free-living nematodes in a beach system characterized by domestic and industrial impacts (Bandar Abbas, Persian Gulf, Iran). Ecoll Indic 118 (106697): 1-13. DOI: 10.1016/j.ecolind.2020.106697.
Semprucci F, Balsamo M, Appolloni L, Sandulli R. 2018a. Assessment of ecological quality status along the Apulian coasts (eastern Mediterranean Sea) based on meiobenthic and nematode assemblages. Mar Biodivers 48 (1): 105-115. DOI: 10.1007/s12526-017-0745-9.
Semprucci F, Balsamo M, Sandulli R. 2016. Assessment of the Ecological Quality (EcoQ) of the Venice lagoon using the structure and biodiversity of the meiofaunal assemblages. Ecol Indic 67: 451-457. DOI: 10.1016/j.ecolind.2016.03.014.
Semprucci F, Cesaroni L, Guidi L, Balsamo M. 2018b. Do the morphological and functional traits of free-living marine nematodes mirror taxonomical diversity? Mar Environ Res 135: 114-122. DOI: 10.1016/j.marenvres.2018.02.001.
Semprucci F, Grassi E, Balsamo M. 2022. Simple is the best: An alternative method for the analysis of free-living nematode assemblage structure. Water (Switzerland) 14 (1114): 1-16. DOI: 10.3390/w14071114.
Singh R, Ingole BS. 2016. Structure and function of nematode communities across the Indian western continental margin and its oxygen minimum zone. Biogeosciences 13 (1): 191-209. DOI: 10.5194/bg-13-191-2016.
Šmilauer P, Lepš J. 2014. Multivariate Analysis of Ecological Data (Second). Cambridge University Press, Cambridge. DOI: 10.1360/zd-2013-43-6-1064.
Soetaert K, Muthumbi A, Heip C. 2002. Size and shape of ocean margin nematodes?: morphological diversity and depth-related patterns. Mar Ecol Prog Ser 242: 179-193. DOI: 10.3354/meps242179.
Song Y, Yan C, Gao C, Xu H, Hua E, Liu X. 2022. Seasonal distribution of meiofaunal assemblages in the Mangrove Tidal Flat of Futian, Shenzhen, China. J Ocean Univ China 21 (4): 955-964. DOI: 10.1007/s11802-022-4869-6.
Steyaert M, Deprez T, Bezerra T, Demesel I, Derycke S, Desmet G, Fonseca G, de Assuncao Franco M, Gheskiere T, Hoste E, Ingels J, Moens T, Vanaverbeke J, VanGaever S, Vanhove S, Vanreusel A, Verschelde D, Vincx M. 2005. Electronic key to the free-living marine nematodes. https://www.marinespecies.org/aphia.php?p=idkeys redirect&page=licence&taxon=280&keyid=13
Thistle D, Sherman KM. 1985. The nematode fauna of a deep-sea site exposed to strong near-bottom currents. Deep Sea Res A, Oceanogr Res Pap 32 (9): 1077-1088. DOI: 10.1016/0198-0149(85)90063-9.
Van Den Hoogen J, Geisen S, Routh D, Ferris H, Traunspurger W, Wardle DA, de Goede RGM, Adams BJ, Ahmad W, Andriuzzi WS, Bargdgett R, Bonkowski M, Campos-Herrera R, Cares JE, Caruso T, De Brito Caixeta L, Chen X, Costa SR, Creamer R et al. 2019. Soil nematode abundance and functional group composition at a global scale. Nat Res 527: 194-208. DOI: 10.1038/s41586-019-1418-6.
Wafula M, Muthumbi A, Wang’ondu V. 2019. Meiofauna and nematode community assemblage as sediment disturbance indicatorinMida Creek, Kenya. Ocean Life 3: 24-37. DOI: 10.13057/oceanlife/o030104.
Weiser W. 1953. Die beziehung zwischen mundhöhlengestalt, ernährungsweise und vorkommen bei freilebenden marinen Nematoden. Ark Zool 2: 439-484.