Biosurfactant production of entomopathogenic Bacillus subtilis BK7.1, as potential biocontrol bacteria, isolated from Baluran National Park, East Java, Indonesia

##plugins.themes.bootstrap3.article.main##

SALAMUN
RIZKY DANANG SUSETYO
NI’MATUZAHROH
FATIMAH
ALMANDO GERALDI
AGUS SUPRIYANTO
TRI NURHARIYATI
FARAH AISYAH NAFIDIASTRI
NABILATUN NISA’
ENDARTO

Abstract

Abstract. Salamun, Susetyo RD, Ni’matuzahroh, Fatimah, Geraldi A, Supriyanto A, Nurhariyati T, Nafidiastri FA, Nisa’ N, Endarto. 2023. Biosurfactant production of entomopathogenic Bacillus subtilis BK7.1, as potential biocontrol bacteria, isolated from Baluran National Park, East Java, Indonesia. Biodiversitas 24: 1785-1792. Biosurfactants as biocontrol agents have received much attention for pest control and disease vectors. The research aimed to identify the species and genetic relationship, hemolytic activity, detect coding genes, and trial production of biosurfactants on various substrates of entomopathogenic Bacillus sp. BK7.1 isolated from natural soil in Baluran National Park, East Java, Indonesia. Biosurfactant screening was carried out by testing hemolytic activity, surface tension, and emulsification activities, detecting coding genes of biosurfactant biosynthesis, and testing biosurfactant production in various substrates. The results of the molecular identification by amplifying the 16S rRNA gene using the Polymerase Chain Reaction (PCR) method for Bacillus sp. BK7.1 has a genetic similarity of 98.68% with B. subtilis subsp. inaquosorum strain BGSC 3A28. Screening showed positive hemolytic activity results, reduced surface tension, increased emulsification activities, and the production of biosurfactant in glucose, glycerol, and molasses substrates. The PCR results showed that Bacillus sp. BK7.1 had srfAA and srfAD genes encoding surfactin biosynthesis, giving it the potential to produce bioinsecticide compounds. Based on these studies, the indigenous entomopathogenic B. subtilis BK7.1 can be developed as environmentally friendly microbial bioinsecticides for pest control and disease vectors.

##plugins.themes.bootstrap3.article.details##

References
Abdel-Mawgoud AM, Aboulwafa MM, Hassouna NA-H (2008) Optimization of surfactin production by Bacillus subtilis isolate BS5, Appl Biochem Biotech 150(3):305–25. http://dx.doi.org/10.1007/s12010-008-8155-x
Al-Wahaibi Y, Joshi S, Al-Bahry S, Elshafie A, Al-Bemani A, Shibulal B (2014) Biosurfactant production by Bacillus subtilis B30 and its application in enhancing oil recovery, Colloids and Surfaces B: Biointerfaces 114:324–333. https://doi.org/10.1016/j.colsurfb.2013.09.022
Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. App Microb Biotechnol 87(2):427–444. https://doi.org/10.1007/s00253-010-2589-0
Bergamasco VB, Mendes DRP, Fernandes OA, Desidério JA, Lemos MVF (2013) Bacillus thuringiensis Cry1Ia10 and Vip3Aa protein interactions and their toxicity in Spodoptera spp. (Lepidoptera). J Invert Pathol 112(2):152–158. https://doi.org/10.1016/j.jip.2012.11.011
Calvo C, Manzanera M, Silva-Castro GA, Uad I, González-López J (2009) Application of bio-emulsifiers in soil oil bioremediation processes: Future prospects. Sci Total Environ 407:3634–3640. https://doi.org/10.1016/j.scitotenv.2008.07.008
Cawoy H, Mariutto M, Henry G, Fisher C, Vasilyeva N, Thonart, P (2014) Plant defence stimulation by natural isolates of Bacillus depends on efficient surfactin production. Mole Plant Micro Interact 27(2):87-100. http://dx.doi.org/10.1094/MPMI-09-13-0262-R
Chaves MP, Guimaraes MV (2018) Biosurfactant production from industrial wastes with potential remove of insoluble paint. Inter Biodeter Biodegrad 127:10-16. https://doi.org/10.1016/j.ibiod.2017.11.005
Das P, Mukherjee S, Sen R (2008) Improved bioavailability and biodegradation of a model polyaromatic hydrocarbon by a biosurfactant producing bacterium of marine origin. Chemosphere 72:1229-1234. https://doi.org/10.1016/j.chemosphere.2008.05.015
De Almeida DG, Soares SRCF, Luna JM, Rufino, RD, Santos VA, Banat IM, Sarubbo LA (2016) Biosurfactants: Promising molecules for petroleum biotechnology advances. Front Micro 7:1718. https://doi.org/10.3389/fmicb.2016.01718
Deleu M, Lorent J, Lins L, Brasseur R, Braun N, EI Kirat K, Nylander T, Dufre?ne YF, Mingeot-Leclercq MP (2013) Efects of surfactin on membrane models displaying lipid phase separation. Biochem Biophys Acta Biomembran 1828:801-815. https://doi.org/10.1016/j.bbamem.2012.11.007
Francy DS, Thomas JM, Raymond RI, Word CH (1991) Emulsification of hydrocarbon by subsurface bacteria. J Industrial Microbiol Biotechnol 8:237-246. https://doi.org/10.1007/BF01576061
Gayathiri E, Prakash P, Karmegam N, Varjani S, Awasthi MK, Ravindran B (2022) Biosurfactants: Potential and Eco-Friendly Material for Sustainable Agriculture and Environmental Safety—A Review. Agronomy 12(3):662. https://doi.org/10.3390/agronomy12030662
Geetha I, Manonmani AM, Paily KP (2010) Identification and characterization of a mosquito pupicidal metabolite of a Bacillus subtilis subsp. subtilis strain. Appl Microbiol Biotechnol 86:1737–1744. https://doi.org/10.1007/s00253-010-2449-y
Geetha I, Paily KP, Manonmani AM (2012) Mosquito adulticidal activity of a biosurfactant produced by Bacillus subtilis subsp. subtilis. Pest Manag Sci 68(11):1447–1450. https://doi.org/10.1002/ps.3324
Ghribi D, Abdelkefi-Mesrati L, Boukedi H, Elleuch M, Ellouze-Chaabouni S, Tounsi S (2012) The impact of the Bacillus subtilis SPB1 biosurfactant on the midgut histology of Spodoptera littoralis (Lepidoptera: Noctuidae) and determination of its putative receptor. J Invert Patho 109:183–186. https://doi.org/10.1016/j.jip.2011.10.014
Gomaa EZ, El-Meihy RM (2019) Bacterial biosurfactant from Citrobacter freundii MG812314.1 as a bioremoval tool of heavy metals from wastewater. Bull Natl Res Cent 43(1):1-14. https://doi.org/10.1186/s42269-019-0088-8
Gudina EJ, Fernandes EC, Rodrigues AI, Teixeira JA, Rodrigues LR (2015) Biosurfactant production by Bacillus subtilis using corn steep liquor as culture medium. Front Microb 6:59. https://doi.org/10.1016/j.biortech.2014.11.069
Gudiña EJ, Rangarajan V, Sen R, Rodrigues LR (2013) Potential therapeutic applications of biosurfactants. Trends Pharmacol Sci 34(12):667–675. https://doi.org/10.1016/j.tips.2013.10.002
Jacques P (2011) Surfactin and other lipopeptides from Bacillus spp. In Biosurfactants: From genes to applications. In Microbiology Monographs Springer International Publishing. https://link.springer.com/chapter/10.1007/978-3-642-14490-5_3
Jia K, Gao YH, Huang XQ, Guo RJ, Li SD (2015) Rhizosphere inhibition of cucumber fusarium wilt by di erent surfactin excreting strains of Bacillus subtilis. Plant Patho J 31:140-151. https://doi.org/10.5423/ppj.oa.10.2014.0113
Johnson JS, Spakowicz DJ, Hong BY, Petersen LM, Demkowicz P, Chen L, Leopold SR, Hanson BM, Agresta HO, Gerstein M, Sodergren E, Weinstock GM (2019) Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nature Communications 10(1):5029. https://doi.org/10.1038/s41467-019-13036-1
Kapadia SG, Yagnik BN (2013) Current Trend and Potential for Microbial Biosurfactants. Asian J Exp Bio Sci 4:1-8.
Kashkouli RY, Mogharei A, Mousavian S, Vahabzadeh F (2011) Performance of artificial neural network for predicting fermentation characteristics in biosurfactant production by Bacillus subtilis ATCC 6633 using Sugar Cane Molasses. Int. J. Food Engine 7(6). https://doi.org/10.2202/1556-3758.1939
Khedher SB, Boukedi H, Dammak M et al (2017) Combinatorial effect of Bacillus amyloliquefaciens AG1 biosurfactant and Bacillus thuringiensis Vip3Aa16 toxin on Spodoptera littoralis larvae. J Invert Patho 144:11–17. https://doi.org/10.1016/j.jip.2017.01.006
Khedher SB, Boukedi H, Kilani-Feki O (2015) Bacillus amyloliquefaciens AG1 biosurfactant: histopathological effects and diversity of its putative receptors on Tuta absoluta midgut. J Inver Pathol 132:42–47. https://doi.org/10.1016/j.jip.2015.08.010
Korrat E, Abdelmonem AE, Helalia AAR, Khalifa HMS (2012) Toxicological study of some conventional and nonconventional insecticides and their mixtures against cotton leaf worm, Spodoptera littoralis (Boisd.) (Lepidoptera: Noectudae). An Agric Sci 57(2):145–152. http://dx.doi.org/10.1016/j.aoas.2012.08.008
Meena KR, Sharma A, Kanwar SS (2020) Antitumoral and Antimicrobial Activity of Surfactin Extracted from Bacillus subtilis KLP2015. Inter J Peptide Res Therapeu 26(1):423–433. https://doi.org/10.1007/s10989-019-09848-w
Mishra J, Arora NK (2018) Secondary metabolites of fluorescent pseudomonads in biocontrol of phytopathogens for sustainable agriculture. Appl Soil Ecol125:35–45. https://doi.org/10.1016/j.apsoil.2017.12.004
Mongkolthanaruk W (2012) Classification of Bacillus beneficial substances related to plants, humans and animals. J Microbiol Biotech 22:1597-1604. https://doi.org/10.4014/jmb.1204.04013
Moro GV, Almeida RTR, Napp AP, Porto C, Pilau EJ, Ludtke DS, Moro, AV, Vainstein MH (2018) Identification and ultra-high-performance-liquid chromatography coupled with high-resolution mass spectrometry characterization of biosurfactants including a new surfactin, isolated from oil-contaminated environments. Micro Biotech 11:759-769. https://doi.org/10.1111/1751-7915.13276
Mulligan CN, Sharma SK, Mudhoo A (2014) Biosurfactants. Research Trends and Applications. CRC Press Boca Raton Florida. https://doi.org/10.1201/b16383
Nafidiastri FA, Susetyo RD, Nurhariyati T, Supriyanto A, Geraldi A, Ni’matuzahroh, Fatimah, Salamun (2021) Biosurfactant activity of indigenous Bacillus sp. ES4.3 isolated from endemic breeding sites of dengue hemorrhagic fever vector in Surabaya, East Java, Indonesia. BIODIVERSITAS 2(12):5375-5381. https://doi.org/10.13057/biodiv/d221219
Ni’matuzahroh, Trikurniadewi N, Pramadita ARA, Pratiwi IA, Salamun, Fatimah, Sumarsih S (2017) Biodegradation of naphthalene and phenanthren by Bacillus subtilis 3KP. AIP Conference Proceedings 1854:020026. http://dx.doi.org/10.1063/1.4985417
Nwaguma LV, Chikere CB, Okpokwasili GC (2016) Isolation characterization, and application of biosurfactant by Klebsiella pneumonia strain IVN51 isolated from hydrocarbon-polluted soil in Ogoniland, Nigeria. Bioresour Bioproc 3(1):1-13. https://doi.org/10.1186/s40643-016-0118-4
Pearson WR (2013) An Introduction to Sequence Similarity (“Homology”) Searching. Curr Protoc Bioinfor 42(1). https://doi.org/10.1002/0471250953.bi0301s42
Pele MA, Ribeaux DR, Vieira ER, Souza AF, Luna MAC, Rodriguez DM, Andrade RFS, Alviano DS, Alviano CS, Barreto-Bergter E, Santiago ALCMA, Campos-Takaki GM (2019) Conversion of renewable substrates for biosurfactant production by Rhizopus arrhizus UCP 1607 and enhancing the removal of diesel oil from marine soil. Electron J Biotech 38:40-48. https://doi.org/10.1016/J.EJBT.2018.12.003
Pereira JFB, Gudina EJ, Costa R, Vitorino R, Teixeira JA, Coutinho JAP, Rodrigues LR (2013) Optimization and characterization of biosurfactant production by Bacillus subtilis isolates towards microbial enhanced oil recovery applications. Fuel 111:259–268. https://doi.org/10.1016/j.fuel.2013.04.040
Plaza G, Chojniak J, Rudnicka K, Paraszkiewicz K, Bernat P (2015) Detection of biosurfactants in Bacillus species: genes and products identification. J App Micro 119:1023-1034. https://doi.org/10.1111/jam.12893
Raaijmakers JM, de Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Micro Rev 34:1037-1062. https://doi.org/10.1111/j.1574-6976.2010.00221.x
Revathi K, Chandrasekaran R, Thanigaivel A, Kirubakaran SA, Sathish-Narayanan S, Senthil-Nathan S (2013) Effects of Bacillus subtilis metabolites on larval Aedes aegypti L. Pesticide Biochem Physiol 107:369–376. https://doi.org/10.1016/j.pestbp.2013.10.005
Safni I, Lisnawita, Lubis K, Tantawi AR, Murthi S (2018) Isolation and characterization of rhizobacteria for biological control of root-knot nematodes in Indonesia. J Inter Soc Southeast Asian Agric Sci 24(1):67–81. http://repository.usu.ac.id/handle/123456789/70381
Salamun, Fatimah, Fauzi A, Praduwana SN, Ni’matuzahroh (2021) Larvicidal toxicity and parasporal inclusion of native Bacillus thuringiensis BK5.2 against Aedes aegypti. J Basic Clin Physiol Pharmacol 32(4):379–384. https://doi.org/10.1515/jbcpp-2020-0472
Salamun, Ni’matuzahroh, Fatimah, Findawati V, Susetyo RD, Al-Batati N, Nurhariyati T, Supriyanto A (2020) Prospect of Native Entomopathogenic Bacilli from Baluran National Park as Biological Control of Dengue Fever Vector. Annals of Biology 36(2):232–237. https://www.researchgate.net/publication/351100221
Santos DKF, Rufino RD, Luna JM, Santos VA, Sarubbo LA (2016) Biosurfactants: Multifunctional biomolecules of the 21st century. Inter J Mol Sci 17(3):401. https://doi.org/10.3390/ijms17030401
Shafi J, Tian H, Ji M (2017) Bacillus species as versatile weapons for plant pathogens: a review. Biotechnol Biotechnol Equip 31(3):446–459. http://dx.doi.org/10.1080/13102818.2017.1286950
Silva GA, Picanço MC, Bacci L, Crespo ALB, Rosado JF, Guedes RNC (2011) Control failure likelihood and spatial dependence of insecticide resistance in the tomato pinworm, Tuta absoluta. Pest Manag Sci 67(8):913–920. https://doi.org/10.1002/ps.2131
Silva RCFS, de Almeida DG, Rufino RD, Luna JM, Santos VA, Sarubbo LA (2014) Application of biosurfactants in the petroleum industry and the remediation of oil spills. Inter J Mol Sci 15:12523-12542. http://dx.doi.org/10.3390/ijms150712523
Singh V (2012) Biosurfactant – isolation, production, purification, and significance. Inter J Scient Res Public 2(7):1-4. http://dx.doi.org/10.4172/2157-7463.1000124
Srinivasan R, Karaoz U, Volegova M, MacKichan J, Kato-Maeda M, Miller S, Nadarajan R, Brodie EL, Lynch SV (2015) Use of 16S rRNA gene for identification of a broad range of clinically relevant bacterial pathogens. PLOS ONE 10(2):e0117617. https://doi.org/10.1371/journal.pone.0117617
Syaharuddin A, Marzuki, Sumarheni, Evary YM (2018) Isolation and identification of Bacillus alcalophilus from Kappaphycusalvarezii and their antibacterial activity against human pathogens. Asian J Microbiol. Biotechnol Environ Sci 20(1):94–99. https://www.researchgate.net/publication/324692687
Syed S, Tollamadugu NVKVP, Lian B (2020) Aspergillus and Fusarium control in the early stages of Arachis hypogaea (groundnut crop) by plant growth-promoting rhizobacteria (PGPR) consortium. Microbiol Res 240:126562. https://doi.org/10.1016/j.micres.2020.126562
Théatre A, Cano-Prieto C, Bartolini M, Laurin Y, Deleu M, Niehren J, Fida T, Gerbinet S, Alanjary M, Medema MH, Léonard A, Lins L, Arabolaza A, Gramajo H, Gross H, Jacques P (2021) The Surfactin-like lipopeptides from Bacillus spp.: Natural biodiversity and synthetic biology for a broader application range. Front Bioengin Biotech 9:623701. https://doi.org/10.3389%2Ffbioe.2021.623701
Thomas MB (2017) Biological control of human disease vectors: a perspective on challenges and opportunities. BioControl 63(1);61–69. http://dx.doi.org/10.1007/s10526-017-9815-y
Umar A, Zafar A, Wali H, Siddique MP, Malik ZA, Ahmed S (2021) Surfactin-like biosurfactant production and optimization by Bacillus Subtilis SNW3: Product characterization and its influence on seed development and plant growth. Research Square 1-18. https://doi.org/10.21203/RS.3.RS-550205%2FV1
Verma R, Sharma S, Kundu LM, Pandey LM (2020) Experimental investigation of molasses as a sole nutrient for the production of an alternative metabolite biosurfactant. J Water Proc Engine 38:101632. https://doi.org/10.1016/J.JWPE.2020.101632
Yadav AN, Sachan SG, Verma P, Saxena AK (2016) Bioprospecting of plant growth promoting psychrotrophic Bacilli from the cold desert of north western Indian Himalayas. Indian J Exp Biol 54(2):142–150. https://imsear.searo.who.int/handle/123456789/178653
Zaragosa A, Aranda FJ, Espuny MJ, Teruel JA, Marques A, Manresa A, Ortiz A (2010) Hemolytic activity of a bacterial trehalose lipid biosurfactant produced by Rhodococcus sp.: evidence of colloid-osmotic mechanism. Langmuir 26(11):8567-8572. https://doi.org/10.1021/la904637k
Zhu Z, Zhang B, Chen B, Cai Q, Lin W (2016) Biosurfactant production by marine-originated bacteria Bacillus subtilis and Its application for crude oil removal. Water Air Soil Pollutant 227:328. https://doi.org/10.1007/s11270-016-3012-y

Most read articles by the same author(s)

1 2 3 > >>