Leaf morphological traits of nine major tropical trees of Shorea species (Dipterocarpaceae)

##plugins.themes.bootstrap3.article.main##

NUR MUFARHATUN
ARIDA SUSILOWATI
https://orcid.org/0000-0001-9608-4787
IWAN HILWAN
NAWWALL ARROFAHA
KUSUMADEWI SRI YULITA
https://orcid.org/0000-0002-5911-7604
FIFI GUS DWIYANTI
https://orcid.org/0000-0003-0366-3259
ASEP HIDAYAT
https://orcid.org/0000-0003-3755-072X
KOICHI KAMIYA
https://orcid.org/0000-0003-3614-9029
HENTI HENDALASTUTI RACHMAT
https://orcid.org/0000-0003-4586-6820

Abstract

Abstract. Mufarhatun N, Susilowati A, Hilwan I, Arrofaha N, Yulita KS, Dwiyanti FG, Hidayat A, Kamiya K, Rachmat HH. 2023. Leaf morphological traits of nine major tropical trees of Shorea species (Dipterocarpaceae). Biodiversitas 24: 1704-1712. Shorea is the largest genus in the Dipterocarpaceae family and has high leaf morphological variations among its species, which causes difficulties in field identification. Therefore, information on the specific characteristics of the leaf morphology of each species is needed. This study aimed to examine and discriminate leaf morphological traits at both mature and sapling stages of nine Shorea species, namely Shorea balangeran (Korth.) Burck, S. leprosula Miq., S. mecistopteryx Ridl., S. multiflora (Burck) Symington, S. ovalis (Korth.) Blume, S. pinanga Scheff., S. platyclados Slooten ex Endert, S. selanica (Wight & Arn.) Blume, and S. stenoptera Burck. The leaves of 90 mature trees growing in the Dramaga Research Forest (DRF) and Gunung Dahu Research Forest (GDRF) as well as the leaves of 180 saplings growing in the nursery of Forest Research and Development Center (FRDC) were observed. Leaf traits, leaf color, and chlorophyll content were assessed on 3 leaves from each mature tree and 5 from each sapling collected. Furthermore, comparative analysis using F independent test in the one-way analysis variance (ANOVA), multivariate analysis using Principal Component Analysis (PCA), and Hierarchical Cluster Analysis were used in this study. The results showed that 8 of the 11 measured morphological traits were identified as the quantitative leaves morphological differentiators, namely Leaves Width (LW), Lamina Length (LL), the length between the largest Leaves Point (LP) with the base of the leaves, angle of leaves vein (SD), Petiole Length (PL), number of leaves vein (LB), breadth of the leaves (WL), and the Circumference of the Leaves (CL). In addition, the results of cluster analysis showed the nine Shorea spp. are clustered into two major groups. Group 1 consisted of species, S. stenoptera, and S. mecistopteryx, while the remaining are included in Group 2. Our findings conclude that the eight leaf morphological traits obtained from this study are useful as additional characters to distinguish the nine Shorea species in the field.

##plugins.themes.bootstrap3.article.details##

References
Ajiningrum P. 2019. Total chlorophyll pigment content of Avicennia marina plants at different leaf development levels. STIGMA J. Math. Nat. Sci. Unipa. 11:52–59. DOI:10.36456/stigma.vol11.no02.a1734.
Appanah S, Turnbull JM. 1998. A Review of Dipterocarps?: Taxonomy, Ecology and Silviculture. Bogor, Indonesia: Center for International Forestry Research.
Ardi M, Rahmani F, Siami A. 2012. Genetic variation among Iranian oaks (Quercus spp.) using random amplified polymorphic DNA (RAPD) markers. African J. Biotechnol. 11(45):10291–10296. DOI:10.5897/ajb12.325.
Ashton PS. 1982. Dipterocarpaceae. In: Flora Malesiana, I, Spermatophyta. Leiden: Rijksherbarium. p. 237–552.
Aykut Y, Emel U, Tekin BM. 2017. Morphological variability of evergreen oaks (Quercus) in Turkey. Bangladesh J. Plant Taxon. 24(1):39–47. DOI:10.3329/bjpt.v24i1.33004.
Cope JS, Corney D, Clark J, Remagnino P, Wilkin P. 2012. Review: Plant species identification using digital morphometrics: A review. Expert Syst. Appl. 39:7562–7573. DOI:10.1016/j.eswa.2012.01.073.
Cope JS, Corney D, Clark JY, Remagnino P, Wilkin P. 2012. Expert systems with appplications plant species identification using digital morphometrics?: A review. Expert Syst. Appl. 39(8):7562–7573. DOI:10.1016/j.eswa.2012.01.073. http://dx.doi.org/10.1016/j.eswa.2012.01.073.
Ellis B, Daly DC, Hickey LJ, Johnson KR, Wilf P, Wing SL. 2009. Manual of Leaf Architecture. 1st ed. Ithaca, New York: Cornell University Press.
Erizilina E, Pamoengkas P, Darwo D. 2019. Correlation between physical and chemical soil properties and growth of red meranti in Haurbentes Forest Research. J. Nat. Resour. Environ. Manag. 9(1):68–74. DOI:10.29244/jpsl.9.1.68-74. https://journal.ipb.ac.id/index.php/jpsl/article/view/17414.
Ghozali I. 2011. Multivariate Analysis Application with SPSS Program. Semarang: Diponegoro University Publishing Agency.
Hidayati N, Triadiati, Anas I. 2016. Photosynthesis and transpiration rates of rice cultivated under the system of rice intensification and the effects on growth and yield. HAYATI J. Biosci. 23(2):67–72. DOI:10.1016/j.hjb.2016.06.002. http://dx.doi.org/10.1016/j.hjb.2016.06.002.
IBM. 2017. IBM SPSS Statistics for Windows, Version 25.0.
Joly A, Bonnet P, Goëau H, Barbe J, Selmi S, Champ J, Dufour-Kowalski S, Affouard A, Carré J, Molino JF, et al. 2016. A look inside the Pl@ntNet experience: The good, the bias and the hope. Multimed. Syst. 22(6):751–766. DOI:10.1007/s00530-015-0462-9. http://dx.doi.org/10.1007/s00530-015-0462-9.
Kendal D, Hauser CE, Garrard GE, Jellinek S, Giljohann KM, Moore JL. 2013. Quantifying plant colour and colour difference as perceived by humans using digital images. PLOS ONE. 8(8). DOI:10.1371/journal.pone.0072296. https://doi.org/10.1371/journal.pone.0072296.
Kremer A, Dupouey JL, Deans JD, Cottrell J, Csaikl U, Finkeldey R, Espinel S, Jensen J, Kleinschmit J, Van Dam B, et al. 2002. Leaf morphological differentiation between Quercus robur and Quercus petraea is stable across western European mixed oak stands. Ann. For. Sci. 59(7):777–787. doi:10.1051/forest:2002065.
Kura-Hotta M, Satoh K, Katoh S. 1987. Relationship between photosynthesis and chlorophyll content during leaf senescence of rice seedlings. Plant Cell Physiol. 28:1321–1329.
Lind-Riehl JF. 2014. Genetic variation, local adaptation and population structure in North American red oak species, Quercus rubra l. and Q. ellipsoidalis E. J. HILL. Michigan Technological University. http://digitalcommons.mtu.edu/cgi/viewcontent.cgi?article=1862&context=etds.
Liu Y, Li Y, Song J, Zhang R, Yan Y, Wang Y, Du FK. 2018. Geometric morphometric analyses of leaf shapes in two sympatric Chinese oaks: Quercus dentata Thunberg and Quercus aliena Blume (Fagaceae). Ann. For. Sci. 75(4):90. DOI:10.1007/s13595-018-0770-2. https://doi.org/10.1007/s13595-018-0770-2.
Ly BCK, Dyer EB, Feig JL, Chien AL, Del Bino S. 2020. Research techniques made simple: Cutaneous colorimetry: A reliable technique for objective skin color measurement. J. Invest. Dermatol. 140(1):3-12.e1. DOI:10.1016/j.jid.2019.11.003.
Mahonski S, Furlano E, Chiang W. 2022. Validation of a plant identification application using digital images of toxic plants. J. Med. Toxicol. 18(2):159–162. DOI:10.1007/s13181-022-00877-4
Mashudi M. 2017. Effect of population sources and clones to growth variation of Shorea leprosula Miq shoot cuttings. Wallacea For. Res. J. 6:125. DOI:10.18330/jwallacea.2017.vol6iss2pp125-134.
Maya-García R, Torres-Miranda A, Cuevas-Reyes P, Oyama K. 2020. Morphological differentiation among populations of Quercus elliptica Née (Fagaceae) along an environmental gradient in Mexico and Central America. Bot. Sci. 98:50–65. DOI:10.17129/botsci.2395.
Mouine S, Yahiaoui I, Verroust-Blondet A. 2012. Advanced shape context for plant species identification using leaf image retrieval. In: ICMR ’12: Proceedings of the 2nd ACM International Conference on Multimedia Retrieval. Hongkong, China. p. 1–8.
Newman MF, Burgess PF, Whitmore TC. 1996. Manuals of Dipterocarps for foresters. Bogor, Indonesia: Center for International Forestry Research (CIFOR).
Ng FSP. 1991. Manual of forest fruits, seeds and seedlings. Kepong, Kuala Lumpur: Forest Research Institute Malaysia.
Ng K, Lee S, Tnah L, Ng C, Lee CT, Zakaria N, Azman A. 2020. Confirmation of natural hybrid of Shorea leprosula and S. curtisii in Pasir Panjang forest Reserve, Negeri Sembilan, Malaysia. J. Trop. For. Sci. 32:92–96. DOI:10.26525/jtfs32.1.92.
Ngatiman, Fajri M. 2018. Weed control techniques to improve Shorea leprosula Miq. growth in Labanan Research Forest, Berau, East Kalimantan. J. Dipterocarp Ecosyst. Res. 4(1):35–48. DOI:10.20886/jped.2018.4.1.35-48.
Pamoengkas P, Prasetia R. 2014. The growth of Red Meranti (Shorea leprosula Miq.) with selective cutting and line planting in areas IUPHHK-HA PT. Sa. J. Trop. Silvic. 05(3):174–180.
Paria ND, Bose A. 2017. Seedling morphology and its potential in taxonomic studies in Indian Flora. Indian Bot. Soc. J. 96(3&4):233–242.
Pertamawati P. 2010. The responses of potatoes (Solanum tuberosum L.) explant in vitro growth in photoautorof condition. Indones. J. Sci. Technol. 12(1).
Ponton S, Dupouey JL, Dreyer E. 2004. Leaf morphology as species indicator in seedlings of Quercus robur L. and Q. petraea (Matt.) Liebl.: modulation by irradiance and growth flush. Ann. For. Sci. 61:73–80.
Puspa VR, Hidayat T, Supriatno B. 2021. Development of android-based digital determination key application (e-KeyPlant) as learning media for plant identification. J. Phys. Conf. Ser. 1806(1). DOI:10.1088/1742-6596/1806/1/012145.
Rahayu S, Handayani S. 2008. Morphological and anatomical diversity of Pandanus (Pandanaceae) in West Java. Vis Vitalis. 1(2):29–44.
Rosdayanti H, Siregar UJ, Siregar IZ. 2019. Leaf morphology traits of Shorea spp in ex-situ KHDTK Haurbentes. Conserv. Media. 24(2):207–215.
Salisbury FB, Ross CW. 2010. Plant physiology. 2nd ed. Bandung: ITB Press.
Soekotjo. 2009. Intensive Silvicultural Technique (SILIN). 1st ed. Yogyakarta: Gadjah Mada University Press.
Sumertajaya IMB, Sumantri, Heriyanto. 1997. Biplot and procrustes analysis to identify the yield of several rice lines. Stat. Comput. Forum. 2(2):75–83.
Susanty FH, Suhendang E, Jaya INS. 2013. Performance of Dipterocarps forest base on stand structure model approach. J. Plant. For. Res. 10(4):185–199. www.media.neliti.com.
Wäldchen J, Rzanny M, Seeland M, Mäder P. 2018. Automated plant species identification—trends and future directions. PLOS Comput. Biol. 14:e1005993. DOI:10.1371/journal.pcbi.1005993.
Widiyatno W, Soekotjo S, Naiem M, Hardiwinoto S, Purnomo S. 2011. Growth of meranti (Shorea spp.) in the selective cutting and line planting with intensive silviculture (TPTJ-SILIN). J. For. Res. Nat. Conserv. 8(4):373–383. DOI:10.20886/jphka.2011.8.4.373-383.
Wu SG, Bao FS, Xu EY, Wang Y, Chang Y, Xiang Q. 2007. A leaf recognition algorithm for plant classification using probabilistic neural network. In: IEEE Int. Symp. Signal Process. Inf. Technol. p. 11–16.
Yusniar E, Kustiyo A. 2014. Shorea leaves identification using KNN with 2DPCA feature extraction. J. Comput. Sci. Agri-Informatics. 3:19–27.

Most read articles by the same author(s)

<< < 1 2 3 4 5 > >>