Confirmation of mutation and genetic stability of the M4 generation of chili pepper’s (Capsicum frutescens L.) Ethyl Methane Sulfonate (EMS) mutant based on morphological, physiological and molecular characters

##plugins.themes.bootstrap3.article.main##

ESTRI LARAS ARUMINGTYAS
ATIATURROCHMAH
JONI KUSNADI
https://orcid.org/0000-0003-1396-9315

Abstract

Abstract. Arumingtyas EL, Atiaturrochmah, Kusnadi J. 2023. Confirmation of mutation and genetic stability of the M4 generation of chili pepper’s (Capsicum frutescens L.) Ethyl Methane Sulfonate (EMS) mutant based on morphological, physiological and molecular characters. Biodiversitas 24: 531-538. The initial generation of Ethyl Methane Sulfonate (EMS) random mutations usually still shows high variation due to allele segregation. This research aimed to confirm the genetic differences between the M4 generation of chili pepper (Capsicum frutescens L.) mutant resulted from EMS mutations (G7/01) and the initial line (G7), and the stability of the mutant based on morphological, physiological, and molecular characters. The morphological characters and the capsaicinoid content of the mutants G7/01 with the initial line (G7) were compared. The capsaicinoid content and fruit spiciness were measured by spectrophotometer ? 280 nm. Molecular characterization was conducted using Random Amplified Polymorphic DNA (RAPD) genetic markers. Based on the morphological characters, the G7/01 mutants have some superior properties compared to the initial line G7. All the G7/01 mutant plants contain higher capsaicinoid compounds than the initial line plants. The dendrogram developed based on RAPD profile showed that all the mutant plants were positioned apart from the initial line plant, suggesting that there are some genomic changes in the mutants compared to the initial line plants. All the mutant plants, except T1, showed insignificant variation in morphological characteristic, capsaicin content, and RAPD profile, indicating genetic stability.

##plugins.themes.bootstrap3.article.details##

References
Arruvitasari PN. 2016. Effect of mutagen Etyl Methane Sulfonate (EMS) on morphological characters and capsaicin content of three local chili genotypes (Capsicum frutescens L.)”, BSc, Thesis, Dept. Biology, Brawijaya University, Malang. [Indonesia]
Arumingtyas EL, Kusnadi J, Sari DRT, Ratih N. 2017. Genetic variability of Indonesian local chili pepper: the facts; AIP Conference Proc., Malang, Nov. 2017, pp.1-10. [Indonesia]
Baye TM, Abebe T, Wilke RA. 2011. Genotype-environment interactions and their translational implications. Per. Med. , 8(1): 59-70, Jan. 2011. 10.2217/pme.10.75.
Carvalho SIC, Ragassi CF, Bianchetti LB, Reifschneider FJB, Buso GSC, Faleiro FG. 2014. Morphological and genetic relationships between wild and domesticated forms of peppers (Capsicum frutescens L. and C. chinense Jacquin). Gen. Mol. Res. 13(3): 7447–7464. 10.4238/2014.
Clark MS. 1997. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Plant Molecular Biology - A laboratory manual. New York, NY, USA: Springer-Verlog Berlin Hiedelberg, pp.12-13.
Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19(1): 11-15.
Dwinianti EF, Juliandari RR, Mastuti R, Arumingtyas EL. 2018. The profile of partial sequence of putative aminotransferase (pAMT) gene and total capsaisinoid content of Ethyl Methane Sulfonate (EMS)-induced chili pepper (Capsicum frutescens L.) mutans. Plant. Cell Biotechnol. Mol. Biol.. 19(7-8): 284-292.
Girija M, Dhanavel D. 2009. Mutagenic effectiveness and efficiency of gamma rays ethyl methane sulfonate and their combined treatments in cowpea (Vigna unguiculata L. Walp). Int. J. Mol. Sci. 4(2): 68-75.
Goyal S, Balick DJ, Jerison ER, Neher RA, Shraiman BI, Desai MM. 2012. Dynamic mutation-selection balance as an evolutionary attractor. Genetics. 191(4): 1309-1319, Jun. 2012. 10.1534/genetics.112.141291.
Gurung T, Techawongstien S, Suriharn B, Techawongstien S. 2011. Impact of Environments on the Accumulation of Capsaicinoids in Capsicum spp. Hortscience. 46(12): 1576–1581. Dec. 2011. dx.doi.org/10.21273/HORTSCI.46.12.1576
Harten VAM. 2007. Mutation breeding: Theory and Practical Application. New York: Cambridge University Press
Juliandari RR, Mastuti R, Arumingtyas EL. 2017. Microsatellite Marker for Genetic Variation Analysis in Local Chili Pepper (Capsicum frutescens L.) Induced by Ethyl Methane Sulfonate (EMS). J. Trop. Life Sci. 9(2): 189-194, Jul. 2017.
Kumari N, Thakur SK. 2014. Randomly Amplified Polymorphic DNA-A Brief Review. Am. J. Anim. Vet. Sci. 9(1): 6-13, Jan. 2014. 10.3844/ajavssp.
Lee SG, Kim SK, Lee HJ, Lee HS, Lee JH. 2017. Impact of moderate and extreme climate change scenarios on growth, morphological features, photosynthesis, and fruit production of hot pepper. Ecol. Evol. 8(1): 197-206. Nov. 2017. 10.1002/ece3.3647.
Lodish H, Berk A, Matsudaira P, Kaiser CA, Krieger M, Scott MP, et al. 2005. Molecular cell biology. 5th Edition, New York: W.H. Freeman and Co
Loewe L, William GH. 2010. The population genetics of mutations: good, bad and indifferent. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 365(1544): 1153-1167, Apr.
Lorenz TZ. 2012. Polymerase Chain Reaction (PCR) basic protocol plus troubleshooting and optimization strategies. J. Vis. Exp. vol. 63, e3998, May 2012.10.3791/3998 2012
Manzila I, Priyatno TP, Nugroho K, Terryana RT, Lestari P, Hidayat SH. 2020. Molecular and morphological characterization of EMS-induced chili pepper mutants resistant to Chili veinal mottle virus. Biodivers. 21(4): 1448-1457, Oct. 2020
Montalvo JEO., Morozowa K, Ferrentino G, Sucre MOR, Buenfil IMR, Scamphicchio M. 2021. Effects of local environmental factors on the spiciness of habanero chili peppers (Capsicum chinense Jacq.) by coulometric electronic tongue. Eur. Food Res. Technol. 247: 101–110. Jan. 2021. 10.1007/s00217-020-03610-z.
Ogawa K, Murota K, Shimura H, Furuya M, Togawa Y, Matsumura T, Masuta C. 2015. Evidence of capsaicin synthase activity of the Pun1-encoded protein and its role as a determinant of capsaicinoid accumulation in pepper. BMC Plant Biol. 15(93). 10.1186/s12870-015-0476-7
Oladosu Y, Rafii MY, Abdullah N, Hussin G, Ramli A, Rahim HA, Miah G, Usman M. 2016. Principle and application of plant mutagenesis in crop improvement: a review. Biotechnol. Biotechnol. Equip., 30(1): 1-16. DOI: 10.1080/13102818.2015.1087333
Pharmawati M, Defiani MR, Wrasiati LP, Wijaya IMAS. 2018. Morphological Changes of Capsicum annuum L. Induced by Ethyl Methanesulfonate (EMS) at M2 Generation. Curr. Agri. Res. 6(1). Apr. 2018. 10.12944/CARJ.6.1.0101
Rahman MJ, Inden H. 2012. Effect of nutrient solution and temperature on capsaicin content and yield contributing characteristics in six sweet pepper (Capsicum annuum L.) cultivars. J. Food Agric. Environ. 10(1): 524-529. Jan. 2012.
Reilly CA, Yost GS. 2006. Metabolism of capsaicinoids by p450 enzymes: a review of recent findings on reaction mechanisms, bio-activation, and detoxification processes. Drug Metab. Rev. 38(4): 685-706. 10.1080/03602530600959557.
Sahid ZD, Syukur M, Maharijaya A. 2020. Genetic diversity of capsaicin content, quantitative, and yield component in chili (Capsicum annuum) and their F1 hybrid. Biodiversitas. 21(5): 2251-2257.
Sanjet K. 2019. The Capsicum Crop. Switzerland: Spinger Nature.
Tanaka Y, Nakashima F, Erasmus K, Goto T. 2016. Difference in capsaicinoid biosynthesis gene expression in the pericarp reveals elevation of capsaicinoid contents in chili peppers (Capsicum chinense). Plant Cell Rep. 36(2): 267-279 10.1007/s00299-016-2078-8.
Wei Y, Deng XW, Yang C, Tang X. 2021. The Genome-Wide EMS Mutagenesis Bias Correlates With Sequence Context and Chromatin Structure in Rice,” Front. Plant Sci. vol.12, art. 579675, March 2021. 10.3389/fpls.2021.579675
Zamora AG, Campos ES, Morales RP. 2015. Measurement of capsaicinoid in chiltepin Hot Pepper: a comparison study between specthrophotometric method and high performance liquid chromatography analysis. J. Chem. 15: 1-10, Jan. 2015. 10.1155/2015/709150

Most read articles by the same author(s)