The effects of micronutrient-enriched media on the efficacy of Bacillus subtilis as biological control agent against Meloidogyne incognita

##plugins.themes.bootstrap3.article.main##

Muh. Adiwena
Aditya Murtilaksono
Saat Egra
Mohammad Hoesain
Iis Nur Asyiah
Ankardiansyah Pandu Pradana
Zidna Nurul Izatika

Abstract

The root-knot nematodes Meloidogyne incognita poses a serious threat to horticultural food and plantation crops. One of the effective and efficient measures to overcome this nematode is using bacteria as a biological control agent. This study aimed to test the effectiveness of Bacillus subtilis bacteria grown on media with additional micronutrients as a biological control agent for M. incognita. The test was carried out by growing bacteria in 100 mL of nutrient broth (NB) added with FeCl2, MnCl2, and CuCl2. Each type of micronutrient was administered at concentrations of 35 ppm, 40 ppm, 45 ppm, 50 ppm, and 55 ppm. As a control, NB media was used without the addition of micronutrients. The test results showed that the best performances on bacterial growth were 55 ppm MnCl2, 45 ppm MnCl2, 40 ppm MnCl2, 40 ppm CuCl2, 50 ppm MnCl2, and 35 ppm MnCl2. These six treatments were then used in an antagonism test. A total of 150 J2 M. incognita in 4 mL of suspension was put into a petri dish with a diameter of 5 cm. After that, 1 mL of each bacterial suspension was put into a petri dish following the treatment. The mortality rate of M. incognita in each treatment was 77.5% in 55 ppm MnCl2, 74.5% in 45 ppm MnCl2, 77.25% in 40 ppm MnCl2, 73.25% in 40 ppm CuCl2, 78.75% in 50 ppm MnCl2, 79% in 35 ppm MnCl2, and 53.25% in control. The same six treatments were also used to measure the chemotaxis index of M. incognita on tomato roots. Tomato seeds of the Tantyna variety were soaked for 60 minutes in a bacterial suspension grown on micronutrient-enriched media. After seven days, the tomato seed roots were removed and placed in 5 mL 20% Pluronic F-127 Gel which had been infested with 100 J2 M. incognita. After 6 hours, the number of nematodes approaching the roots was observed. The chemotaxis index in the treatments ranged from 16% to 24%, while that in the control was 33%. This study corroborates that the addition of micronutrients MnCl2 and CuCl2 to the growth medium of B. subtilis can increase antagonistic activity against M. incognita and suppress its chemotaxis response in tomato roots soaked in the bacterial suspension.

##plugins.themes.bootstrap3.article.details##

References
Abdel-Salam M, Ameen HH, Soliman GM, Elkelany U, Asar AM. 2018. Improving the nematicidal potential of Bacillus amyloliquefaciens and Lysinibacillus sphaericus against the root-knot nematode Meloidogyne incognita using protoplast fusion technique. Egypt J Biol Pest Control 28(1): 1-6. DOI: 10.1186/s41938-018-0034-3.
Adrio JL, Demain AL. 2014. Microbial enzymes: tools for biotechnological processes. Biomol 4(1): 117-139. DOI: 10.3390/biom4010117.
Albergoni V, Piccinni E. 1983. Biological response to trace metals and their biochemical effects. In trace element speciation in surface waters and its ecological implications. Springer 159-175. DOI: 10.1007/978-1-4684-8234-8_10
Archibald FS, Fridovich I. 1981. Manganese and defenses against oxygen toxicity in Lactobacillus plantarum. J Bacteriol 145(1): 442-451. DOI: 10.1128/jb.145.1.442-451.1981.
Asghar A, Mukhtar T, Raja MU, Gulzar A. 2020. Interaction between Meloidogyne javanica and Ralstonia solanacearum in chili. Pak J Zool 52(4): 1525-1525. DOI: 10.17582/journal.pjz/20190501030529.
Asyiah IN, Mudakir I, Hoesain M, Pradana AP, Djunaidy A, Sari RF. 2020. Consortium of endophytic bacteria and rhizobacteria effectively suppresses the population of Pratylenchus coffeae and promotes the growth of Robusta coffee. Biodivers J Biol Divers 21(10): 4702-4708. DOI: 10.13057/biodiv/d211032.
Asyiah IN, Prihatin J, Hastuti AD, Winarso S, Widjayanthi L, Nugroho D, Firmansyah K, Pradana AP. 2021. Cost-effective bacteria-based bionematicide formula to control the root-knot nematode Meloidogyne spp. on tomato plants. Biodivers J Biol Divers 22(6): 3256-3264. DOI: 10.13057/biodiv/d220630.
Baetz U, Martinoia E. 2014. Root exudates: the hidden part of plant defense. Trends Plant Sci 19(2): 90-98. DOI: 10.1016/j.tplants.2013.11.006.
Barra NG, Anhê FF, Cavallari JF, Singh AM, Chan DY, Schertzer JD. 2021. Micronutrients impact the gut microbiota and blood glucose. J Endocrinol 250(2): 1-21. DOI: 10.1530/JOE-21-0081.
Basyony AG, Abo-Zaid GA. 2018. Biocontrol of the root-knot nematode, Meloidogyne incognita, using an eco-friendly formulation from Bacillus subtilis, lab. and greenhouse studies. Egypt J Biol Pest Control. 28(1): 1-13. DOI: 10.1186/s41938-018-0094-4.
Bhatti D, Jain RK. 1977. Estimation of loss in okra, tomato and brinjal yield due to Meloidogyne incognita. Indian J Nematol 7(1): 37-41.
Borah B, Thakur P, Nigam J. 2002. The influence of nutritional and environmental conditions on the accumulation of poly???hydroxybutyrate in Bacillus mycoides RLJ B?017. J Appl Microbiol 92(4): 776-783. DOI: 10.1046/j.1365-2672.2002.01590.x.
Bradá?ová K, Weber NF, Morad-Talab N, Asim M, Imran M, Weinmann M, Neumann G. 2016. Micronutrients (Zn/Mn), seaweed extracts, and plant growth-promoting bacteria as cold-stress protectants in maize. Chem Biol Technol Agric 3(1): 1-10. DOI: 10.1186/s40538-016-0069-1.
Burgess J, Quarmby J, Stephenson T. 1999. Role of micronutrients in activated sludge-based biotreatment of industrial effluents. Biotechnol Adv 17(1): 49-70. DOI: 10.1016/S0734-9750(98)00016-0.
Chaerani C. 2022. Plant parasitic nematodes in agricultural ecosystem of Indonesia. J Perlindungan Tanam Indones 26(2): 1-12. DOI: 10.22146/jpti.71037.
Chan E. 2003. Microbial Nutrition and Basic Metabolism. Handbook of Water and Wastewater Microbiology. Academic Press, New York.
Chinheya CC, Yobo KS, Laing MD. 2017. Biological control of the rootknot nematode, Meloidogyne javanica (Chitwood) using Bacillus isolates, on soybean. Biol Control 109: 37-41. DOI: 10.1016/j.biocontrol.2017.03.009.
Choong YY, Norli I, Abdullah AZ, Yhaya MF. 2016. Impacts of trace element supplementation on the performance of anaerobic digestion process: A critical review. Bioresour Technol 209: 369-379. DOI: 10.1016/j.biortech.2016.03.028.
Choudhary DK, Johri BN. 2009. Interactions of Bacillus spp. and plants–with special reference to induced systemic resistance (ISR). Microbiol Res 164(5): 493-513. DOI: 10.1016/j.micres.2008.08.007.
Costa OY, Oguejiofor C, Zühlke D, Barreto CC, Wünsche C, Riedel K, Kuramae EE. 2020. Impact of different trace elements on the growth and proteome of two strains of Granulicella, class “Acidobacteriia”. Front Microbiol 11(1227): 1-16. DOI: 10.3389/fmicb.2020.01227.
dos Santos BdMS, Silva MSdRdA, Chavez DWH, Rigobelo EC. 2021. 'Bacillus subtilis' - capacity for enzymatic degradation, resistance to trace elements, antagonisms and siderophore production. Aust J Crop Sci 15(5): 787-795. DOI: 10.3316/informit.167709706731376.
Ehwaeti M, Phillips M, Trudgill D. 1998. The viability of Meldidogyne incognita eggs released from egg masses of different ages using different concentrations of sodium hypochlorite. Nematol 44(2): 207-219. DOI: 10.1163/005325998X00081.
el Zahar Haichar F, Santaella C, Heulin T, Achouak W. 2014. Root exudates mediated interactions belowground. Soil Biol Biochem 77: 69-80. DOI: 10.1016/j.soilbio.2014.06.017.
Elling AA. 2013. Major emerging problems with minor Meloidogyne species. Phytopathol 103(11): 1092-1102. DOI: 10.1094/PHYTO-01-13-0019-RVW.
Feng H, Fu R, Hou X, Lv Y, Zhang N, Liu Y, Xu Z, Miao Y, Krell T, Shen Q. 2021. Chemotaxis of beneficial rhizobacteria to root exudates: The first step towards root–microbe rhizosphere interactions. Int J Mol Sci 22(13): 1-14. DOI: 10.3390/ijms22136655.
Forte E, Borisov VB, Falabella M, Colaço HG, Tinajero-Trejo M, Poole RK, Vicente JB, Sarti P, Giuffrè A. 2016. The terminal oxidase cytochrome bd promotes sulfide-resistant bacterial respiration and growth. Sci Rep 6(1): 1-8. DOI: 10.1038/srep23788.
Furusawa A, Uehara T, Ikeda K, Sakai H, Tateishi Y, Sakai M, Nakaho K. 2019. Ralstonia solanacearum colonization of tomato roots infected by Meloidogyne incognita. J Phytopathol 167(6): 338-343. DOI: 10.1111/jph.12804.
Gomes E, Soares F, Souza D, Lima L, Sufiate B, Ferreira T, Queiroz J. 2018. Role of Synadenium grantii latex proteases in nematicidal activity on Meloidogyne incognita and Panagrellus redivivus. Brazil J Biol 79: 665-668. DOI: 10.1590/1519-6984.188129.
Guerrieri A, Dong L, Bouwmeester HJ. 2019. Role and exploitation of underground chemical signaling in plants. Pest Manag Sci 75(9): 2455-2463. DOI: 10.1002/ps.5507.
Gumienna?Kontecka E, Rowi?ska??yrek M, ?uczkowski M. 2018. The role of trace elements in living organisms. Recent Adv Trace Elements 177-206. DOI: 10.1002/9781119133780.ch9.
Hajihassani A, Davis RF, Timper P. 2019. Evaluation of selected nonfumigant nematicides on increasing inoculation densities of Meloidogyne incognita on cucumber. Plant Dis 103(12): 3161-3165. DOI: 10.1094/PDIS-04-19-0836-RE.
Hantke K. 2001. Iron and metal regulation in bacteria. Curr Opini Microbiol 4(2): 172-177. DOI: 10.1016/S1369-5274(00)00184-3.
Helmann JD. 2014. Specificity of metal sensing: iron and manganese homeostasis in Bacillus subtilis. J Biol Chem 289(41): 28112-28120. DOI: 10.1074/jbc.R114.587071.
Hua GKH, Timper P, Ji P. 2019. Meloidogyne incognita intensifies the severity of Fusarium wilt on watermelon caused by Fusarium oxysporum f. sp. niveum. Can J Plant Pathol 41(2): 261-269. DOI: 10.1080/07060661.2018.1564939.
Huang X-F, Chaparro JM, Reardon KF, Zhang R, Shen Q, Vivanco JM. 2014. Rhizosphere interactions: root exudates, microbes, and microbial communities. Bot 92(4): 267-275. DOI: 10.1139/cjb-2013-0225
Kaloshian I, Teixeira M. 2019. Advances in plant – nematode interactions with emphasis on the notorious nematode genus Meloidogyne. Phytopathol 109(12): 1988-1996. DOI: 10.1094/PHYTO-05-19-0163-IA.
Khanna K, Jamwal VL, Kohli SK, Gandhi SG, Ohri P, Bhardwaj R, Wijaya L, Alyemeni MN, Ahmad P. 2019. Role of plant growth promoting bacteria (PGPRs) as biocontrol agents of Meloidogyne incognita through improved plant defense of Lycopersicon esculentum. Plant Soil 436(1): 325-345. DOI: 10.1007/s11104-019-03932-2.
Kidd P, Barceló J, Bernal MP, Navari-Izzo F, Poschenrieder C, Shilev S, Clemente R, Monterroso C. 2009. Trace element behaviour at the root–soil interface: implications in phytoremediation. Environ Exp Bot 67(1): 243-259. DOI: 10.1016/j.envexpbot.2009.06.013.
Kim JS, Lee J, Lee CH, Woo SY, Kang H, Seo SG, Kim SH. 2015. Activation of pathogenesis-related genes by the rhizobacterium, Bacillus sp. JS, which induces systemic resistance in tobacco plants. Plant Pathol J 31(2): 195. DOI: 10.5423/PPJ.NT.11.2014.0122.
Kurniawati F, Supramana S, Adnan AM. 2017. Spesies Meloidogyne penyebab puru akar pada seledri di Pacet, Cianjur, Jawa Barat. J Fitopatol Indones 13(1): 26-26. DOI: 10.14692/jfi.13.1.26.
Kuzu SB, Güvenmez HK, Denizci AA. 2012. Production of a thermostable and alkaline chitinase by Bacillus thuringiensis subsp. kurstaki strain HBK-51. Biotechnol Res Intern 1-6. DOI:10.1155/2012/135498.
Lee N, Kim W, Chung J, Lee Y, Cho S, Jang K-S, Kim SC, Palsson B, Cho B-K. 2020. Iron competition triggers antibiotic biosynthesis in Streptomyces coelicolor during coculture with Myxococcus xanthus. ISME J 14(5): 1111-1124. DOI: 10.1038/s41396-020-0594-6.
Lee YS, Kim KY. 2016. Antagonistic potential of Bacillus pumilus L1 against root?Knot nematode, Meloidogyne arenaria. J Phytopathol 164(1): 29-39. DOI: 10.1111/jph.12421.
Liu H, Hu Q, Chen N, Feng C. 2021. Effects of trace elements and current densities on denitrification, microbe growth, ATP generation and enzyme activity in a bio-electrochemical reactor. Intern J Electrochem Sci 16(11).
Mostafanezhad H, Sahebani N, Zarghani SN. 2014. Control of root-knot nematode (Meloidogyne javanica) with combination of Arthrobotrys oligospora and salicylic acid and study of some plant defense responses. Biocontrol Sci Technol 24(2): 203-215. DOI: 10.1080/09583157.2013.855166.
Mota LC, dos Santos MA. 2016. Chitin and chitosan on Meloidogyne javanica management and on chitinase activity in tomato plants. Trop Plant Pathol 41(2): 84-90. DOI: 10.1007/s40858-016-0072-x.
Mota MS, Gomes CB, Souza IT, Moura AB. 2017. Bacterial selection for biological control of plant disease: criterion determination and validation. Brazil J Biol 48(1): 62-70. DOI: 10.1016/j.bjm.2016.09.003
Munif A, Supramana S, Herliyana EN, Pradana AP. 2019. Endophytic bacterial consortium originated from forestry plant roots and their nematicidal activity against Meloidogyne incognita infestation in greenhouse. Acta Univ Agricu Silvicult Mendel Brun. 67(5): 1171-1182. DOI: 10.11118/actaun201967051171.
Pieterse CM, Zamioudis C, Berendsen RL, Weller DM, Van Wees SC, Bakker PA. 2014. Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52: 347-375. DOI: 10.1146/annurev-phyto-082712-102340.
Rangarajan V, Dhanarajan G, Kumar R, Sen R, Mandal M. 2012. Time?dependent dosing of Fe2+ for improved lipopeptide production by marine Bacillus megaterium. J Chem Technol Biotechnol 87(12): 1661-1669. DOI: 10.1002/jctb.3814.
Rasmann S, Ali JG, Helder J, van der Putten WH. 2012. Ecology and evolution of soil nematode chemotaxis. J Chem Ecol 38(6): 615-628. DOI: 10.1007/s10886-012-0118-6.
Regmi H, Desaeger J. 2020. Integrated management of root-knot nematode (Meloidogyne spp.) in Florida tomatoes combining host resistance and nematicides. Crop Prot 134. DOI: 10.1016/j.cropro.2020.105170.
Shen A, Edwards AN, Sarker MR, Paredes-Sabja D. 2019. Sporulation and germination in clostridial pathogens. Microbiol Spectr 7(6). DOI: 10.1128/microbiolspec.GPP3-0017-2018.
Shivakumara TN, Dutta TK, Rao U. 2018. A novel in vitro chemotaxis bioassay to assess the response of towards various test compounds. J Nematol 50(4): 487-494. DOI: 10.21307/jofnem-2018-047.
Siddiqui ZA, Qureshi A, Akhtar M. 2009. Biocontrol of root-knot nematode Meloidogyne incognita by Pseudomonas and Bacillus isolates on Pisum sativum. Arch Phytopathol Plant Prot. 42(12): 1154-1164. DOI: 10.1080/03235400701650890.
Sidhu G, Webster J. 1977. Predisposition of tomato to the wilt fungus (Fusarium oxysporum lycopersici) by the root-knot nematode (Meloidogyne incognita). Nematol 23(4): 436-442. DOI: 10.1163/187529277X00363.
Singh T, Prajapati A, Maru A, Chaudhary R, Patel D. 2019. Root-knot nematodes (Meloidogyne spp.) infecting pomegranate: a Review. Agric Rev 40(4): 309-313.
Subedi S, Thapa B, Shrestha J. 2020. Root-knot nematode (Meloidogyne incognita) and its management: a review. J Agric Nat Resour 3(2): 21-31. DOI: 10.3126/janr.v3i2.32298.
Sun H, Jiang S, Jiang C, Wu C, Gao M, Wang Q. 2021. A review of root exudates and rhizosphere microbiome for crop production. Environ Sci Pollut Res 28(39): 54497-54510. DOI: 10.1007/s11356-021-15838-7.
Taher M, Suastika G. 2012. Identifikasi Meloidogyne penyebab penyakit umbi bercabang pada wortel di Dataran Tinggi Dieng. J Fitopatol Indones 8(1): 16-16. DOI: 10.14692/jfi.8.1.16.
Tapia-Vázquez I, Montoya-Martínez AC, los Santos-Villalobos D, Ek-Ramos MJ, Montesinos-Matías R, Martínez-Anaya C. 2022. Root-knot nematodes (Meloidogyne spp.) a threat to agriculture in Mexico: Biology, current control strategies, and perspectives. World J Microbiol Biotechnol 38(2): 1-18. DOI: 10.1007/s11274-021-03211-2.
Thongkaewyuan A, Chairin T. 2018. Biocontrol of Meloidogyne incognita by Metarhizium guizhouense and its protease. Biol Control 126: 142-146. DOI: 10.1016/j.biocontrol.2018.08.005.
Townsend DE, Naqui A. 1998. Comparison of SimPlate TotalTM plate count test with plate count agar method for detection and quantitation of bacteria in food. J AOAC Int 81(3): 563-570. DOI: 10.1093/jaoac/81.3.563.
Urek RO, Pazarlioglu NK. 2007. Enhanced production of manganese peroxidase by Phanerochaete chrysosporium. Brazil Arch Biol Technol 50(6): 913-920. DOI: 10.1590/S1516-89132007000700001.
Vives-Peris V, de Ollas C, Gómez-Cadenas A, Pérez-Clemente RM. 2020. Root exudates: from plant to rhizosphere and beyond. Plant Cell Rep 39(1): 3-17. DOI: 10.1007/s00299-019-02447-5.
Walker TS, Bais HP, Grotewold E, Vivanco JM. 2003. Root exudation and rhizosphere biology. Plant Physiol 132(1): 44-51. DOI: 10.1104/pp.102.019661.
Wang C, Lower S, Williamson VM. 2009. Application of Pluronic gel to the study of root-knot nematode behaviour. Nematol 11(3): 453-464. DOI: 10.1163/156854109X447024.
Wang J, Ding Z, Bian J, Bo T, Liu Y. 2021. Chemotaxis response of Meloidogyne incognita to volatiles and organic acids from root exudates. Rhizosphere 17. DOI: 10.1016/j.rhisph.2021.100320.
Wei YH, Wang LF, Chang JS. 2004. Optimizing iron supplement strategies for enhanced surfactin production with Bacillus subtilis. Biotechnol Prog 20(3): 979-983. DOI: 10.1021/bp030051a.
Wiratno W, Syakir M, Sucipto I, Pradana AP. 2019. Isolation and characterization of endophytic bacteria from roots of Piper nigrum and their activities against Fusarium oxysporum and Meloidogyne incognita. Biodivers J Biol Divers 20(3): 682-687. DOI: 10.13057/biodiv/d200310.
Wiyono S, Schulz D, Wolf G. 2008. Improvement of the formulation and antagonistic activity of Pseudomonas fluorescens B5 through selective additives in the pelleting process. Biol Control 46(3): 348-357. DOI: 10.1016/j.biocontrol.2008.04.020.
Yabalak E, Ibrahim F, Eliuz EAE, Everest A, Gizir AM. 2022. Evaluation of chemical composition, trace element content, antioxidant and antimicrobial activities of Verbascum pseudoholotrichum. Plant Biosyst Int J Dealing Asp Plant Biol 156(2): 313-322. DOI: 10.1080/11263504.2020.1852332.
Yoon GY, Lee YS, Lee SY, Park RD, Hyun HN, Nam Y, Kim KY. 2012. Effects on Meloidogyne incognita of chitinase, glucanase and a secondary metabolite from Streptomyces cacaoi GY525. Nematol 14(2): 175-184. DOI: 10.1163/138855411X584124.
Zhang Y, Gladyshev VN. 2009. Comparative genomics of trace elements: emerging dynamic view of trace element utilization and function. Chem Rev 109(10): 4828-4861. DOI: 10.1021/cr800557s.

Most read articles by the same author(s)

1 2 > >>