Characteristic and activity of cellulolytic bacteria isolated from mangrove soil in Northern Coast of Aceh Province, Indonesia

##plugins.themes.bootstrap3.article.main##

IRMA DEWIYANTI
DARMAWI DARMAWI
ZAINAL A. MUCHLISIN
https://orcid.org/0000-0002-0858-1853
TEUKU Z. HELMI
https://orcid.org/0000-0001-8623-2854
IKO I. ARISA
RAHMIATI RAHMIATI
ERLY DESTRI
SITI FANISHA

Abstract

Abstract. Dewiyanti I, Darmawi D, Muchlisin ZA, Helmi TZ, Arisa II, Rahmiati R, Destri E, Fanisha S. 2022. Characteristic and activity of cellulolytic bacteria isolated from mangrove soil in Northern Coast of Aceh Province, Indonesia. Biodiversitas 23: 6587-6599. The cellulolytic bacteria as decomposing cellulose bacteria is related to the soil fertility and productivity of the mangrove ecosystem, and the presence and activity of enzymes produced can evaluate them. The study aims to analyze the cellulolytic bacteria characterization, cellulase enzyme activity, and production and to evaluate the molecular biology of cellulase bacteria isolated from the mangrove soil on the northern coast of Aceh Province, Indonesia. This study was conducted at six locations, and soil samples were collected randomly with three replications. The results showed that the purified bacteria produced 39 isolates that grew in CMC selective media. The common bacteria discovered have an irregular colony shape, undulate colony edge, raised colony elevation, and cream pigmentation. The bacilli cell is the most common shape, while 22 bacteria out of the 39 isolates showed cellulase activity. The cellulolytic index (CI) ranged from 0.31 to 4.82, and the highest CI was BTM533 (4.82), followed by BTM622 (2.09). The quantitative analysis showed that the highest specific cellulase activity of BTM533 and BTM622 were at 36 hours and 42 hours with the value of 0.042 U mg-1 and 0.129 U mg-1. Among the bacteria isolates, two cellulolytic bacteria with high cellulase activity were identified as Bacillus safensis and B. altitudinis using the 16S rRNA gene molecularly.

##plugins.themes.bootstrap3.article.details##

References
REFERENCES
Aarti C, Khusro A, Agastian P, Darwish MN, Al Farraj AD. 2020. Molecular diversity and hydrolytic enzymes production abilities of soil bacteria. Saudi J Biol Sci 27 (12): 3235-3248. DOI: 10.1016/j.sjbs.2020.09.049.
Abalos JMF, Arribas AR, Garda AL, Santamaria RI. 1997. Effect of carbon source on the expression of celA1, a cellulase-encoding from Stretomyces halstedii JM8. FEMS Microbiol Letters 153: 97-103. DOI: 10.1111/j.1574-6968.1997.tb10469.x.
Abu El-Regal MA, Ibrahimb NK. 2014. Role of mangroves as a nursery ground for juvenile reef fishes in the southern Egyptian Red Sea. Egypt J Aquat Res 40 (1): 71-78. DOI: 10.1016/j.ejar.2014.01.001.
Akond MA, Jahan MN, Sultana N, Rahman F. 2016. Effect of temperature, pH and NaCl on the isolates of Actinomycetes from straw and compost samples from Savar, Dhaka, Bangladesh. Am J Microbiol Immunol 1 (2): 10-15.
Anoop Kumar V, Suresh Chandra Kurup R, Snishamol C, Nagendra Prabhu G. 2019. Role of cellulases in food, feed, and beverage industries. In: B. Parameswaran et al. (eds.), Green Bio-processes, Energy, Environment and Sustainability. Springer Nature Singapore Pte Ltd. 2. DOI: 10.1007/978-981-13-3263-0_17.
Arifanti VB, Sidik F, Mulyanto B, Susilowati A, Wahyuni TSY, Yuniarti N, Aminah A, Suita E, et al. 2022. Challenges and strategies for sustainable mangrove management in Indonesia: A Review. Forests 13 (695): 1-18. DOI: 10.3390/f13050695
Ariffin H, Abdullah N, Umi Kalsom MS, Shirai Y, Hassan MA. 2006. Production and characterization of cellulase by Bacillus pumilus eb3. Int J Eng Technol 3 (1): 47-53.
Baker GC, Smith JJ, Cowan DA. 2003. Review and re-analysis of domain specific 16S primers. J Microbiol Meth 55 (3): 541–555. DOI: 10.1016/j.mimet.2003.08.009.
Becerra SC, Daniel CR, Carlos JS, Robert JC, David MB. 2016. An optimized staining technique for the detection of Gram positive and Gram-negative bacteria within tissue. BMC Res Notes 9 (216): 1-10. DOI: 10.1186/s13104-016-1902-0.
Behera BC, Parida S, Dutta, SK, Thatoi HN. 2014. Isolation and identification of cellulose degrading bacteria from mangrove soil of Mahanadi River Delta and their cellulase. American Journal of Microbiological Research 2 (1): 41-46. DOI: 10.12691/ajmr-2-1-6.
Benard LD, Tuah PM, Suadin EG, Jamian N. 2015. Isolation and characterization of surface and subsurface bacteria in seawater of Mantanani Island, Kota Belud, Sabah by direct and enrichment techniques. IOP Conf. Ser. Mater. Sci. Eng. 78 012033.
Berrada I, Benkhemmar O, Swings J, Bendaou N, Amar M. 2012. Selection of halophilic bacteria for biological control of tomato gray mould caused by Botrytis cinerea. Phytopathol Mediterr 51: 625–630. DOI: 10.14601/Phytopathol_Mediterr-10627.
Bhatt K, Lal S, Srinivasan R, Joshi B. 2020. Bioconversion of agriculture wastes to produce ?-amylase from Bacillus velezensis KB 2216: Purification and characterization. Biocatal Agric Biotechnol 28: 101703. DOI: 10.1016/j.bcab.2020.101703.
Biswas S, Al Saber Md, Tripty IA, Karim AMd, Islam AMd, Hasan SMd, Rubayet Ul Alam ASM, Jahid KMdI, Hasan NMd. 2020. Molecular characterization of cellulolytic (endo- and exoglucanase) bacteria from the largest mangrove forest (Sundarbans), Bangladesh. Ann Microbiol 70 (68): 1-11. DOI: 10.1186/s13213-020-01606-4.
Bradner JR, Gillings M, Nevalainen KMH. 1999. Qualitative assessment of hydrolytic activities in Antarctic microfungi grown at different temperatures on solid media. World J Microbiol Biotechnol 15 (1): 131–132. DOI: 10.1023/A:1008855406319.
Castro C, Zuluaga R, Alvarez C, Putaux JL, Caro G, Rojas OJ, Mondragon I, Ganan P. 2012. Bacterial cellulose produced by a new acid-resistant strain of Gluconacetobacter genus. Carbohydr. Polym 89 (4): 1033-1037. DOI: 10.1016/j.carbpol.2012.03.045.
Chantarasiri A. 2015. Aquatic Bacillus cereus JD0404 isolated from the muddy sediments of mangrove swamps in Thailand and characterization of its cellulolytic activity. Egypt J Aquat Res 41(3) 257–64. DOI: 10.1016/j.ejar.2015.08.003.
Choi YW, Hodgkiss IJ, Hyde KD. 2005. Enzyme production by endophytes of Brucea javanica. J Agric Sci Technol. 29: 55-66.
Corbin BD. 2004. Identification and characterization Bacillus thuringiensis. J Bacteriol 186: 7736-7744.
Dalgaard P, Koutsoumanis K. 2001. Comparison of maximum specific growth rates and lag times estimated from absorbance and viable count data by different mathematical models. J Microbiol Methods 43 (3): 183–196. DOI: 10.1016/s0167-7012(00)00219-0.
Dewiyanti I, Darmawi D, Muchlisin ZA, Helmi TZ, Imelda I, Defira CN. 2020. Physical and chemical characteristics of soil in mangrove ecosystem based on differences habitat in Banda Aceh and Aceh Besar. IOP Conf. Ser. Earth Environ. Sci. 674 012092.
Dos Santos TC, Gomes DPP, Bonomo RCF, Franco M. 2012. Optimization of solid-state fermentation of potato peel for the production of cellulolytic enzymes. Food Chem 133: 1299?1304. DOI: 10.1016/j.foodchem.2011.11.115.
El Dakar AY, Shalaby SM, Saoud IP. 2007. Assessing the use of a dietary probiotic/prebiotics as an enhancer of spinefoot Rabbitfish Siganus rivulatus survival and growth. Aquac Nutr 13: 407-412. DOI: 10.1111/j.1365-2095.2007.00491.x
Eveleigh DE, Mandels M, Andreotti R, Roche C. 2009. Measurement of saccharifying cellulase. Biotechnol Biofuels 2: 1-8. DOI: 10.1186/1754-6834-2-21.
Fitri L, Bessania MA, Septia N, Suhartono S. 2021. Isolation and characterization of soil actinobacteria as cellulolytic enzyme producer from Aceh Besar, Indonesia. Biodiversitas 22 (11): 5169-5180. DOI: 10.13057/biodiv/d221155.
Gurung N, Ray S, Bose S, Rai V. 2013. A Broader view. Microbial enzymes and their relevance in industries, medicine, and beyond. BioMed Res Int Article ID 329121: 1-18. DOI: 10.1155/2013/329121.
Gupta P, Samant K, Avinash S. 2012. Isolation of cellulose-degrading bacteria and determination of their cellulolytic potential. Int J Microbiol ID 578925: 1-5. DOI: 10.1155/2012/578925.
Hasegawa M, Kishino H, Yano. 1985 Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22 (2): 160-174. DOI: 10.1007/BF02101694.
Harefa MS, Nasution Z, Mulya MB, Maksum A. 2022. Mangrove species diversity and carbon stock in silvofishery ponds in Deli Serdang District, North Sumatra, Indonesia. Biodiversitas 23 (2): 655-662. DOI: 10.13057/biodiv/d230206.
Hrenovic J, Ivankovic T. 2009. Survival of Escherichia coli and Acinetobacter junii at various concentrations of sodium chloride. EurAsia J BioSci 3 (17): 144-151. DOI: 10.5053/EJOBIOS.2009.3.0.18.
Iqbalsyah T M, Amna U, Utami RS, Oesman F, Febriani. 2019. Concomitant cellulase and amylase production by a thermophilic bacterial isolate in a solid-state fermentation using rice husks. Agr Nat Resour 53 (4): 327–333. DOI: 10.34044/j.anres.2019.53.4.01.
Jo WS, Park HN, Cho DH, Yoo YB, Park SC. 2011. Optimal media conditions for the detection of extracellular cellulase activity in Ganoderma neo-japonicum. Mycobiology 39 (2): 129-132. DOI: 10.4489/MYCO.2011.39.2.129.
Jacobs R, Kusen J, Sondak C, Boneka F, Warouw V, Mingkid W. 2019. Community structure of mangrove ecosystems and mangrove crabs in Lamanggo Village and Tope Village, Biaro District, Siau Islands Regency, Tagulandang, Biaro. J Pesisir Laut Trop 7 (1): 20-29. DOI: 10.35800/Jplt.7.1.2019.22817.
Kalaiselvi V, Jayalakshmi S, Lakshmi, NR. 2013. Biofuel production using marine microbes. Int J Curr Microbiol Appl Sci 2 (5): 67–74. DOI: 10.31357/fesympo.v21i0.3088.
Karthika A, Seenivasagan R, Kasimani R, Babalola OO, Vasanthy M. 2020. Cellulolytic bacteria isolation, screening and optimization of enzyme production from vermicompost of paper cup waste. J Waste Manag 116: 58-65. DOI: 10.1016/j.wasman.2020.06.036.
Kasana SC, Richa S, Hena D, Som D, Arvind G. 2008. A rapid and essay method for the detection of microbial cellulase on agar plates using gram’s iodine. Cur Microbio 57 (5): 503-507. DOI: 10.1007/s00284-008-9276-8.
Kathiresan K, Bingham BL. 2001. Biology of mangroves and mangrove ecosystems. Adv Mar Biol 40: 81-251. DOI: 10.1016/S0065-2881(01)40003-4.
Kathiresan K, Saravanakumar K, Anburaj R, Gomathi V, Abirami G, Sahu SK, Anandhan S. 2011. Microbial enzyme activity in decomposing leaves of mangroves. Int J Adv Biotechnol Res 2 (3): 382-389.
Khalila R, Fitri L, Suhartono. 2020. Isolation and characterization of thermophilic bacteria as cellulolytic enzyme producer from the hot spring of Ie Seuum Aceh Besar, Indonesia. Microbiol Indones 14 (1): 25-33. DOI: 10.5454/mi.14.1.4.
Khotimah S, Suharjono, Tri A, Yulia N. 2020. Isolation and identification of cellulolytic bacteria at fibric, hemic and sapric peat in Teluk Bakung Peatland, Kubu Raya District, Indonesia. Biodiversitas 21 (5): 2103-2112. DOI: 10.13057/biodiv/d210538.
Kothari VV, Kothari RK, Kothari CR, Bhatt VD, Nathani NM, Koringa PG, Joshi CG, Vyas BRM. 2013. Genomic sequence of salt-tolerant Bacillus safensis strain VK, isolated from saline desert area of Gujarat, India. Genome Announc 1 (5): e00671-13. DOI: 10.1128/genomeA.00671-13.
Khianngam S, Pootaeng-on Y, Techakriengkrai T, Tanasupawat S. 2014. Screening and identification of cellulose producing bacteria isolated from oil palm meal. J Appl Pharm Sci 4 (4): 90–96. DOI: 10.7324/JAPS.2014.40416.
Kumar G, Kanaujia N, Bafana A. 2012. Functional and phylogenetic diversity of root-associated bacteria of Ajuga bracteosa in Kangra valley. Microbiol Res 167: 220–225. DOI: 10.1016/j.micres.2011.09.001
Kumar SS, Sangeeta R, Soumya S, Ranjan RP, Bidyut B, Kumar DMP. 2014. Characterizing novel thermophilic amylase producing bacteria from Taptapani Hot Spring, Odisha, India. Jundishapur J Microbiol 7 (12): e11800. DOI: 10.5812/jjm.11800.
Kurniawan A, Sari SP, Asriani E, Kurniawan A. Sambah AB, Prihanto AW. 2018. Isolation and identification of cellulolytic bacteria from mangrove sediment in Bangka Island. IOP Conf. Ser. Earth Environ. Sci 137 012070. DOI: 10.1088/1755-1315/137/1/012070.
Lateef A, Adelere IA, Gueguim-Kana EB. 2015. The biology and potential biotechnological applications of Bacillus safensis. Biologia 70 (4): 411- 419. DOI: 10.1515/biolog-2015-0062.
Liu J, Avendaño, SM. 2013. Microbial degradation of polyfluoroalkyl chemicals in the environment: A review. Environ Int 61: 98-114. DOI: 10.1016/j.envint.2013.08.022.
McGuire KL, Fierer N, Bateman C, Treseder KK, Turner BL. 2012. Fungal community composition in neotropical rain forests: the influence of tree diversity and precipitation. Microb Ecol 63: 804-812. DOI: 10.1007/s00248-011-9973-x.
Meryandini A, Wahyu W, Besty M, Titi CS, Nisa R, Hasrul S. 2009. Isolasi bakteri selulolitik dan karakteristik enzimnya. Makara J Sci 13 (1): 33-38. DOI: 10.7454/mss.v13i1.369.
Miller GL. 1959. Use of dinitro salicylic acid reagent for determination of reducing sugar. Anal Chem 31 (3): 426-428. DOI: 10.1021/ac60147a030.
Mohapatra S, Pattnaik S, Maity S, Mohapatra, Sharma S, Akhtar J, Pati S, Samantaray DP, Ajit Varma. 2020. Saudi J Biol Sci 27: 1242-1250. DOI: 10.1016/j.sjbs.2020.02.001.
Murtiyaningsih H, Hazmi H. 2017. Isolation and cellulase enzyme activities assays in cellulolytic bacteria origin from soil waste. Agritrop 15(2): 293 – 308.
Naresh S, Balakrishnan K, Ahmad ANG, Yi Peng. 2019. Isolation and partial characterization of thermophilic cellulolytic bacteria from north Malaysian tropical mangrove soil. Trop Life Sci Res 30 (1): 123–147. DOI: 10.21315/tlsr2019.30.1.8.
Noor T, Nazima B, Roomina M, Noshin I. 2015. Effects of siltation, temperature, and salinity on mangrove plants. Eur J Acad Res II (11): 14172-14179.
Nguyen TH, Nguyen VD. 2017. Characterization and applications of marine microbial enzyme in biotechnology and probiotics for animal health. Adv Food Nutr Res 80: 37-74. DOI: 10.1016/bs.afnr.2016.11.007.
Odeniyi OA, Onilude AA, Ayodele MA. 2009. Production characteristics and properties of cellulase/polygalacturonase by a Bacillus coagulans strain from a fermenting palm-fruit industrial residue. Afr J Microbiol Res 3 (8): 407-417.
Ogochukwu AA, Oluwagunke T, Ebohon J. 2017. Survival and growth rate of coastal water Escherichia coli isolates in different salt concentrations. Ife J Sci Technol 19 (1): 41-49. DOI: 10.4314/ijs.v19i1.6.
Oje Aru O, Ikechukwu NEO, Bonaventure CO, Chibuike SU. 2012. Isolation and characterization of gram-negative hydrocarbon clastic bacteria and fungi strains from noncontaminated, premium motor spirit contaminated and refuse environment. J Environ Occup Sci 1 (3): 133-140. DOI: 10.5455/jeos.20121114065419.
Orsi WD, Richards TA, Francis WR. 2018. Predicted microbial secretomes and their target substrates in marine sediment. Nat Microbiol 3 (1): 32–37. DOI: 10.1038/s41564-017-0047-9.
Pérez S, Samain D. 2010. Structure and engineering of celluloses. Adv Carbohydr Chem Biochem 64: 25-116. DOI: 10.1016/S0065-2318(10)64003-6.
Pitri RE, Agustien A, Febria FA. 2015. Isolation and characterization of amylothermophylic bacteria from Medang River hot springs. J Bio UA 4 (2): 119-122.
Puspita F, Ali M, Pratama R. 2017. Isolation and characterization of morphology and physiology of Bacillus sp. endophytic of Palm Oil (Elaeis guineensis Jacq.). J Agrotek Trop 6 (2): 44-49.
Ramana KV, Tomar T, Singh L. 2000. Effect of various carbon and nitrogen sources on cellulose synthesis by Acetobacter xylinum. World J Microbiol Biotechnol 16 (3): 245-248. DOI: 10.1023/A:1008958014270.
Ramírez CM, Castro M, Osorio M, Taborda MT, Gómez B, Zuluaga R, Gómez C, Gañán P, Rojas OJ, Castro C. 2017. Effect of different carbon sources on bacterial nanocellulose production and structure using the low pH resistant strain Komagataeibacter Medellinensis. Materials 10 (639): 1-13. DOI: 10.3390/ma10060639.
Roeßler M, Müller V. 2002. Chloride, a new environmental signal molecule involved in gene regulation in a moderately halophilic bacterium, Halobacillus halophilus. J Bacteriol 184 (22): 6207-6215. DOI: 10.1128/JB.184.22.6207–6215.2002
Rolfe MD, Rice CJ, Lucchini S, Pin C, Thompson A, Cameron ADS, Alston M, Stringer MF, Betts RP, Baranyi J, Peck MW, Hintona JCD. 2012. Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation. J Bacteriol Res 194 (3): 686 –701. DOI: 10.1128/JB.06112-11.
Safika, Wenny NS, Darmawi, Yudha F, Sukmawan FS. 2018. Isolation and identification of a cellulolytic Bacillus from Rumen of Aceh’s Cattle. Asian Jr of Microbiol Biotech Env Sc 20 (3): 798-804.
Saichana N, Matsushita K, Adachi O, Frébort I, Frebortova J. 2015. Acetic acid bacteria: A group of bacteria with versatile biotechnological applications. Biotechnol Adv 1 (33): 1260–1271. DOI: 10.1016/j.biotechadv.2014.12.001.
Sari WN, Safika S, Darmawi D, Fahrimal Y. 2017. Isolation and identification of a cellulolytic Enterobacter from rumen of Aceh cattle. Vet World 10 (12): 1515-1520. DOI: 10.14202/vetworld.2017.1515-1520.
Setyati WA, Martani E, Triyanti, Subagiyo, Zainuddin M. 2014. Selection, identification and optimization of the growth water probiotic consortium of mangrove ecosystems as bioremediation and biocontrol in shrimp ponds. JPHPI 17 (3): 243-253. DOI: 10.17844/jphpi.v17i3.8913.
Seo JK, Park TS, Kwon IH, Piao MY, Lee CH, Ha JK. 2013. Characterization of cellulolytic and xylanolytic enzymes of Bacillus licheniformis JK7 isolated from the rumen of a native Korean goat. AJAS 26 (1): 50–58. DOI: 10.5713/ajas.2012.12506.
Shome BR, Mandal AB, Bandyopadhyay AK. 1995. Bacteria flora in mangrove of Andaman part I: isolation, identification and antibiogram studies. Ind J Mar Sci 24: 97-98.
Sinsabaugh RL. 1994. Enzymic analysis of microbial pattern and process. Biol Fertil Soil 17: 69-74 DOI: 10.1007/BF00418675.
Soares-Junior FL, Dias ACF, Fasanella CC, Taketani RG, de Souza Lima AO, Melo IS, Andreote FD. 2013. Endo-and exoglycanase activities in bacteria from mangrove sediment. Brazil J Microbiol 44 (3): 969-976. DOI: 10.1590/s1517-83822013000300048.
Sonia NMO, Kusnadi J. 2015. Isolation and partial characterization of cellulase enzyme from isolate OS-16 cellulolytic bacteria origin Bromo-Tengger desert. JPA 3 (4): 11-19.
Srikanth S, Yamauchi L, Chen Z. 2015. Mangrove root: adaptations and ecological importance. Trees 30 (2): 1-15. DOI: 10.1007/s00468-015-1233-0.
Sulman S, Rehman A. 2013. Isolation and characterization of cellulose degrading Candida tropicalis W2 from environmental samples. Pakistan J. Zool 45 (3): 809-816.
Tamura T, Hatano K. 2001. Phylogenetic analysis of the genus Actinoplanes and transfer of Actinoplanes minutisporangius Ruan et al. 1986 and ‘Actinoplanes aurantiacus’ to Cryptosporangium minutisporangium comb.nov. and Cryptosporangium aurantiacum sp.nov. Int J Syst Evol Microbiol 51: 2119-2125. DOI: 10.1099/00207713-51-6-2119.
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular evolutionary genetics analysis version 4.0. Mol Biol Evol 30 (12): 2725-2729. DOI: 10.1093/molbev/mst197.
Thatoi H, Behera BC, Mishra RR, Dutta SK. 2013. Biodiversity and biotechnological potential of microorganisms from mangrove ecosystems: a review. Ann Microbiol 63: 1-19. DOI: 10.1007/s13213-012-0442-7.
Thomas N, Lucas R. Bunting P, Hardy A, Rosenqvist A, Simard M. 2017. Distribution and drivers of global mangrove forest change1996-2010. PLoSONE 12 (6): e0179302. DOI:10.1371/journal.pone.0179302.
Wafula EN, Johnson K, Daniel K, Anne M, Romano M, Tom K. 2015. Morphological characterization of soil bacteria in Ngere Tea Catchment Area of Murang’A Country, Kenya. Int J Life Sci Res 3 (1): 121-134.
Yahya, Happy N, Yenny R, Soemarno. 2014. Characteristic of extracellular metabolic of coastal ecosystem bacteria producing histidine decarboxylase crude. Int Food Res J 21 (4): 1337-1347.
Yanbo W, Zirong X. 2006. Effect of probiotics for Common Carp (Cyprinus carpio) based on growth performance and digestive enzyme activities. Anim Feed Sci Technol 127 (3): 283-292. DOI: 10.1016/j.anifeedsci.2005.09.003.
Yoo JS, Jung YJ, Chung SY, Lee YC, Choi YL. 2004. Molecular cloning and characterization of CMCase Gene (celC) from Salmonella yphimurium UR. J Microbiol. 42 (3), 205-210.
Yulma, Burhanuddin I, Sunarti, Eka M, Neny W, Mursyban. 2017. Identifikasi bakteri pada serasah daun mangrove yang terdekomposisi di kawasan konservasi mangrove dan bekantan (KKMB) Kota Tarakan. J Trop Biodiv Biotech 2 (1), 28-33.
Zhou YW, Zhao B, Peng YS. Chen GZ. 2010. Influence of mangrove reforestation on heavy metal accumulation and speciation in intertidal sediments. Mar Pollut Bull 60 (8): 1319-1324. DOI: 1016/j.marpolbul.2010.03.010.
Zhou Y, Yuan X, Fang LX, Fang J, Jie Li, Guo X, Bai X, Shan H. 2013. Enhancement of growth and intestinal flora in grass crap: The effect of exogenous cellulase. Aquaculture 416-417: 1-7. DOI: 10.1016/j.aquaculture.2013.08.023.
Zverlova VV, Holl W, Schwarz H. 2003. Enzymes for digestion of cellulose and other polysaccharides in the gut of longhorn beetle larvae, Rhagium inquisitor L. (Col. Cerambycidae). Int Biodeterior Biodegradation 51 (3): 175-179. DOI: 10.1016/S0964-8305(02)00139-7.

Most read articles by the same author(s)

1 2 > >>