First report of entomopathogenic fungi from South Sumatra (Indonesia): pathogenicity to egg, larvae, and adult of Culex quinquefasciatus

##plugins.themes.bootstrap3.article.main##

INDRI RAMAYANTI
SITI HERLINDA
AHMAD MUSLIM
HAMZAH HASYIM

Abstract

Abstract. Ramayanti I, Herlinda S, Muslim A, Hasyim H. 2022. First report of entomopathogenic fungi from South Sumatra (Indonesia): pathogenicity to egg, larvae, and adult of Culex quinquefasciatus. Biodiversitas 23: 5695-5702. Mosquito control has currently used many biocontrol agents, such as entomopathogenic fungi. So, the study aimed to determine the pathogenicity of the entomopathogenic fungi from South Sumatra to the eggs, larvae, and adults of Culex quinquefasciatus. The fungal isolates used were eight isolates from South Sumatra and have been identified molecularly. The fungal species that were the most pathogenic to the eggs of Cx. quinquefasciatus were Beauveria bassiana (BSwTd4, TaLmME, TaPsBA isolates), Metarhizium anisopliae (MSwTp3 isolate), Penicillium citrinum (BKbTp isolate), and Talaromyces diversus (MSwTp1 isolate). The Cx. quinquefasciatus eggs infected with the fungus not only could kill the eggs but also could continue to kill the emerging larvae, pupae, and adult. This is the first record that B. bassiana, M. anisopliae, P. citrinum, and T. diversus from South Sumatera Indonesia were pathogenic to the eggs of Cx. quinquefasciatus and had ovicidal activity. The most pathogenic fungal species to the larvae of Cx. quinquefasciatus were M. anisopliae (MSwTp3 isolate) and B. bassiana (BSwTd4 and TaLmME isolates). Three species of entomopathogenic fungi that were the most pathogenic to the adults of Cx. quinquefasciatus were M. anisopliae (MSwTp3 isolate), B. bassiana (BSwTd4 and TaLmME isolates), and P. citrinum (BKbTp isolate). Finally, The entomopathogenic fungi from South Sumatra have the negative effect on Cx. quinquefasciatus growth. The entomopathogenic fungi from South Sumatra have potential to be developed as the ovicide, larvicide, and adulticide. The future application of the fungi against the mosquito eggs, larvae, and adults can be used an ovitrap, fungal spores formulated in a synthetic oil, and fungus-impregnated black cloths, respectively.

##plugins.themes.bootstrap3.article.details##

References
Aguiar RWS, Santos SF dos, Morgado F da S, Ascencio SD, Lopes M de M, Viana KF, et al. 2015. Insecticidal and repellent activity of Siparuna guianensis Aubl. (Negramina) against Aedes aegypti and Culex quinquefasciatus. PLoS One 1–14. DOI: 10.1371/journal.pone.0116765
Alkhaibari AM, Carolino AT, Bull JC, Samuels RI, Butt TM. 2017. Differential pathogenicity of Metarhizium blastospores and conidia against larvae of three mosquito species. J Med Entomol 54: 696–704. DOI: 10.1093/jme/tjw223.
Blanford S, Jenkins NE, Read AF, Thomas MB. 2012. Evaluating the lethal and pre-lethal effects of a range of fungi against adult Anopheles stephensi mosquitoes. Malar J 11: 1–10. DOI: 10.1186/1475-2875-11-365.
Blut A. (2013). Arbonematodes – Nematode infections transmissible. Transfus Med Hemother 40: 50–62. DOI: 10.1159/000345752.
Boomsma JJ, Jensen AB, Meyling N V, Eilenberg J. 2014. Evolutionary interaction networks of insect pathogenic fungi. Annu Rev Entomol 59: 467–485. DOI: 10.1146/annurev-ento-011613-162054.
Borisade OA, Medina A, Magan N. 2016. Interacting temperature and water activity modulate production of destruxin a by Metarhizium anisopliae on galleria larvae-modified agar based media invitro. West African J Appl Ecol 24: 31–42.
Chowa?ski S, Kudlewska M, Marciniak P, Rosi?sk G. 2014. Synthetic insecticides – is there an alternative? Pol J Environ Stud 23: 291–302.
Day JF. 2016. Mosquito oviposition behavior and vector control. Insects 7: 1–22. DOI: 10.3390/insects7040065.
Enciso DG, Vergara CG, Trejo OB, Tovar AL. 2021. Subcutaneous filariasis. Acta Medica Grup Angeles 19: 276–279. DOI: 10.35366/100455.
Famakinde DO. 2018. Mosquitoes and the lymphatic filarial parasites: research trends and budding roadmaps to future disease eradication. Trop Med Infect Dis 3: 1–10. DOI: 10.3390/tropicalmed3010004.
Farnesi LC, Menna-Barreto RFS, Martins AJ, Valle D, Rezende GL. 2015. Physical features and chitin content of eggs from the mosquito vectors Aedes aegypti, Anopheles aquasalis and Culex quinquefasciatus: Connection with distinct levels of resistance to desiccation. J Insect Physiol 83: 43–52. DOI: 10.1016/j.jinsphys.2015.10.006.
Gabarty A, Salem HM, Fouda MA, Abas AA, Ibrahim AA. 2014. Pathogencity induced by the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in Agrotis ipsilon (Hufn.). J Radiat Res Appl Sci 7: 95–100.
Ginandjar P, Saraswati LD, Suparyanto D, Supali T. 2018. The prevalence of lymphatic filariasis in elementary school children living in endemic areas: a baseline survey prior to mass drug administration in Pekalongan District-Indonesia. Iran J Public Heal 47: 1484–1492.
Gordon CA, Jones MK, McManus DP. (2018). The history of bancroftian lymphatic filariasis in Australasia and Oceania: Is there a threat of re-occurrence in Mainland Australia? Trop Med Infect Dis Rev 3: 1–25. DOI: 10.3390/tropicalmed3020058.
Gustianingtyas M, Herlinda S, Suwandi S. 2021. The endophytic fungi from South Sumatra (Indonesia) and their pathogenecity against the new invasive fall armyworm, Spodoptera frugiperda. Biodiversitas 22: 1051–1062. DOI: 10.13057/biodiv/d210510.
Gustianingtyas M, Herlinda S, Suwandi, Suparman, Hamidson H, Hasbi, et al. 2020. Toxicity of entomopathogenic fungal culture filtrate of lowland and highland soil of South Sumatra (Indonesia) against Spodoptera litura larvae. Biodiversitas 21: 1839–1849. DOI: 10.13057/biodiv/d220262.
Hamid PH, Prastowo J, Ghiffari A, Taubert A, Hermosilla C. 2017. Aedes aegypti resistance development to commonly used insecticides in Jakarta, Indonesia. PLoS One 12: 1–11. DOI: 10.1371/journal.pone.0189680.
Herlinda S, Efendi RA, Suharjo R, Hasbi, Setiawan A, Elfita, et al. 2020a. New emerging entomopathogenic fungi isolated from soil in South Sumatra (Indonesia) and their filtrate and conidial insecticidal activity against Spodoptera litura. Biodiversitas 21: 5102–5113. DOI: 10.13057/biodiv/d210711.
Herlinda S, Gustianingtyas M, Suwandi S, Suharjo R, Sari JMP, Lestari RP. 2021. Endophytic fungi confirmed as entomopathogens of the new invasive pest, the fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), infesting maize in South Sumatra, Indonesia. Egypt J Biol Pest Control 31: 1–13. DOI: 10.13057/biodiv/d211115.
Herlinda S, Octariati N, Suwandi S, Hasbi. 2020b. Exploring entomopathogenic fungi from South Sumatra (Indonesia) soil and their pathogenicity against a new invasive maize pest, Spodoptera frugiperda. Biodiversitas 21: 2955–2965. DOI: 10.1186/s41938-021-00470-x.
Intarapuk A, Bhumiratana A. 2021. Investigation of Armigeres subalbatus, a vector of zoonotic Brugia pahangi filariasis in plantation areas in Suratthani, Southern Thailand. One Heal 13: 1–8. DOI: 10.1016/j.onehlt.2021.100261.
Kauffman E, Payne A, Franke MA, Schmid MA, Harris E, Kramer LD. 2017. Rearing of Culex spp. and Aedes spp. mosquitoes. Bio Protoc 7: 1–25. DOI: 10.21769/BioProtoc.2542.Rearing.
Leles RN, D’Alessandro WB, Luz C. 2012. Effects of Metarhizium anisopliae conidia mixed with soil against the eggs of Aedes aegypti. Parasitol Res 110: 1579–1582. DOI: 10.1007/s00436-011-2666-z.
Luz C, Mnyone LL, Russell TL. 2011. Survival of anopheline eggs and their susceptibility to infection with Metarhizium anisopliae and Beauveria bassiana under laboratory conditions. Parasitol Res 109: 751–758. DOI: 10.1007/s00436-011-2318-3.
Maketon M, Amnuaykanjanasin A, Kaysorngup A. 2014. A rapid knockdown effect of Penicillium citrinum for control of the mosquito Culex quinquefasciatus in Thailand. World J Microbiol Biotechnol 30: 727–736. DOI: 10.1007/s11274-013-1500-4.
Mancillas-Paredes JM, Hernández-Sánchez H, Jaramillo-Flores ME, García-Gutiérrez C. (2019). Proteases and chitinases induced in Beauveria bassiana during infection by Zabrotes subfasciatus. Southwest Entomol 44: 125–137. DOI: 10.3958/059.044.0114.
Mnyone LL, Kirby MJ, Mpingwa MW, Lwetoijera DW, Knols BGJ, Takken W, et al. 2011. Infection of Anopheles gambiae mosquitoes with entomopathogenic fungi: Effect of host age and blood-feeding status. Parasitol Res 108: 317–322. DOI: 10.1007/s00436-010-2064-y.
Nchoutpouen E, Talipouo A, Djiappi-tchamen B, Djamouko- L, Kopya E, Ngadjeu CS, et al. 2019. Culex species diversity, susceptibility to insecticides and role as potential vector of Lymphatic filariasis in the city of Yaounde Cameroon. PLoS Negl Trop Dis 13: 1–16.
Nurjazuli N, Santjaka A. 2020. Potential sources of transmission and distribution of lymphatic filariasis in Semarang City, Central Java, Indonesia. Unnes J Public Heal 9: 43–49. DOI: 10.15294/ ujph.v0i0.30895.
Ortiz-Urquiza A, Keyhani NO. 2013. Action on the surface: Entomopathogenic fungi versus the insect cuticle. Insects 4: 357–374. DOI: 10.3390/insects4030357.
Perea NO, Callaghan A. 2017. Pond dyes are Culex mosquito oviposition attractants. PeerJ 5: 1–12. DOI: 10.7717/peerj.3361.
Pratiwi R, Anwar C, Salni, Hermansyah, Novrikasari, Ghiffari A, et al. 2019. Species diversity and community composition of mosquitoes in a filariasis endemic area in Banyuasin District, South Sumatra, Indonesia. Biodiversitas 20: 453–462. DOI: 10.13057/biodiv/d200222.
Quesada-moraga E, Vey A. 2004. Bassiacridin, a protein toxic for locusts secreted by the entomopathogenic fungus Beauveria bassiana. Mycol Res 108: 441–452. DOI: 10.1017/S0953756204009724.
Ramayanti I, Herlinda S, Muslim A, Hasyim H. 2022. Entomopathogenic fungi from South Sumatra (Indonesia) pathogenicity to egg, larvae, and adult of Aedes aegypti. HAYATI J Biosci in Press. e-pub ahead of print, doi: 10.4308/hjb.XX.X.XXX-XXX. (inpress)
Ridha MR, Rahayu N, Hairani B, Perwitasari D, Kusumaningtyas H. 2020. Biodiversity of mosquitoes and Mansonia uniformis as a potential vector of Wuchereria bancrofti in Hulu Sungai Utara District, South Kalimantan, Indonesia. Vet World 13: 2815–2821.
Safavi SA. 2012. In vitro and in vivo induction, and characterization of beauvericin isolated from Beauveria bassiana and its bioassay on Galleria mellonella larvae. J Agric Sci Technol 15: 1–10.
Santoso, Yahya, Supranelfy Y, Suryaningtyas NH. 2021. Endemicity of lymphatic filariasis in Belitung Regency post elimination. Adv Soc Sci Educ Humanit Res 521: 286–289.
Shoukat RF, Hassan B, Shakeel M, Zafar J, Li S, Freed S, et al. 2020. Pathogenicity and transgenerational effects of Metarhizium anisopliae on the demographic parameters of Aedes albopictus (Culicidae: Diptera). J Med Entomol 57: 677–685. DOI: 10.1093/jme/tjz236.
Simonsen PE, Mwakitalu ME. 2013. Urban lymphatic filariasis. Parasitol Res 112: 35–44. DOI: 10.1007/s00436-012-3226-x.
Siwiendrayanti A, Pawenang ET, Wijayanti Y, Cahyati WH. 2020. Analysis of lymphatic filariasis case distribution for preparing environmental based elimination strategy in Brebes Regency, Indonesia. In: Proceedings of the 5 th International Seminar on Public Health and Education (ISPHE 2020). European Alliance for Innovation: Semarang, pp 59–67. DOI: 10.4108/eai.22-7-2020.2300254.
Susilowati D. 2018. Utilization of rosmarin leaf oil (Rosmarinus officinalis L) on Culex quinquefasciatus mosquito larva as a filariasis vector (elephant foot disease). In: Vol. 1. Proceedings International Conference on Healthcare. pp 27–33.
Talipouo A, Mavridis K, Nchoutpouen E, Djiappi?Tchamen B, Fotakis EA, Kopya E, et al. 2021. High insecticide resistance mediated by different mechanisms in Culex quinquefasciatus populations from the city of Yaoundé, Cameroon. Sci Rep 11: 1–11. DOI: 10.1038/s41598-021-86850-7.
Ughasi J, Bekard HE, Coulibaly M, Adabie-gomez D, Gyapong J, Appawu M, et al. 2012. Mansonia africana and Mansonia uniformis are vectors in the transmission of Wuchereria bancrofti lymphatic filariasis in Ghana. Parasit Vectors 5: 1–5.
Vivekanandhan P, Kavitha T, Karthi S, Senthil-Nathan S, Shivakumar MS. 2018. Toxicity of Beauveria bassiana-28 mycelial extracts on larvae of Culex quinquefasciatus mosquito (Diptera: Culicidae). Int J Environ Res Public Heal 15: 1–11. DOI: 10.3390/ijerph15030440.
Wu H-H, Wang C-Y, Teng H-J, Lin C, Lu L-C, Jian S-W, et al. 2013. A dengue vector surveillance by human population-stratified ovitrap survey for Aedes (Diptera: Culicidae) adult and egg collections in high dengue-risk areas of Taiwan. Popul Community Ecol 50: 261–269. DOI: 10.1603/ME11263.

Most read articles by the same author(s)

1 2 3 > >>