Studying the relationship of immersion duration and characteristics of natural materials FAD to fish aggregation in the sea

##plugins.themes.bootstrap3.article.main##

ARHAM RUMPA
NAJAMUDDIN
SAFRUDDIN
MUHAMMAD ABDUH IBNU HAJAR

Abstract

Abstract. Rumpa A, Najamuddin, Safruddin, Hajar MAI. 2022. Studying the relationship of immersion duration and characteristics of natural materials FAD to fish aggregation in the sea. Biodiversitas 23: 5481-5490. An understanding of immersion duration and the characteristics of natural materials Fish Aggregating Devices (FAD) on fish aggregation in the sea is crucial in developing more effective fishing strategies in FAD areas. The aim of the study was to understand the relationship between immersion duration and characteristics of FADs made from natural materials on the schooling aggregation of mackerel scad (Decapterus russelli) in the sea. The research was conducted from April 2021 to March 2022 in Bone Bay, Indonesia. The type of research was experimental fishing 78 times down at sea to observe the relationship between FAD construction and fish schools. The results demonstrated that the growth of invertebrates in the construction component of FADs based on the period of immersion in the sea at the immersion period of >30 days showed a high growth rate of algae, hydrozoa and crustacean species at the bottom of the raft. The endurance of the coconut leaves attractor at a duration of 3-4 weeks was the best condition for immersion duration in the sea because schooling fish were more concentrated around the attractor at an average distance of 1.2 m, while at a duration of 5-6 weeks the attractor had damaged and the fish schooling was less concentrated. Based on the arrival of schooling fish in FAD areas, the fastest average duration was 3-4 weeks, namely in transitional season 1. The presence of crustacean species caused fish schooling only to be concentrated at a distance of 2-3 m at the time of fishing. In the fishing strategy, the treatment of FADs using dried coconut leaves attractors showed more concentrated fish schooling and calmer fish movement pattern compared to the use of fresh coconut leaves attractor. The characteristics of the components making up FADs had a direct impact on the effectiveness of attracting and concentrating fish. In addition, the characteristics also influenced the schooling distance of fish at the center point of the FAD raft before the fishing gear was lowered.

##plugins.themes.bootstrap3.article.details##

References
Albert JA, Beare D, Schwarz A, Albert S, Warren R, Teri J, Andrew NL. 2014. The contribution of nearshore Fish Aggregating Devices (FADs) to food security and livelihoods in solomon islands. Plos One 9 (12): e115386. DOI: 10.1371/journal.pone.0115386
Altinagac U, Kara A, Ayaz A, Acarli D, Begburs CR, Oztekin A, 2010. Comparison of fish aggregating devices (FADs) having different attractors. Journal of Animal and Veterinary Advances 9(6):1026-1029. DOI: 10.3923/javaa.2010.1026.1029
Atema J, Holland K, Ikehara W. 1980. Olfactory responses of yellowfin tuna (Thunnus albacares) to prey odors: chemical search image. J Chem Ecol 6:457–465 DOI: 10.1007/BF01402922
Brehmer P, Sancho G, Trygonis V, Itano D, Dalen J, Fuchs A, Faraj A, Taquet M. 2019. Towards an autonomous pelagic observatory: Experiences from monitoring fish communities around drifting FADs. Thalassas: Intl J Mar Sci 35: 177-189. DOI: 10.1007/s41208-018-0107-9
Bubun RL, Domu S, Wiji NT, Wisudo H. 2015. Terbentunya daerah penangkapan dengan Light Fishing. Jurnal Airaha 4(1),27–36. DOI: 10.29244/jmf.5.1.57-76 [Indonesia]
Capello M, Deneubourg JL, Robert M, Holland KN, Schaefer KM, Dagorn L. 2016. Population assessment of tropical tuna based on their associative behavior around floating objects. Sci Rep 6 (1): 36415. DOI: 10.1038/srep36415
Capello M, Soria M, Cotel P, Potin G, Dagorn L, Preon P. 2013. Effect of current and daylight variations on small-pelagic fish aggregations (Selar Crumenophthalmus) around a coastal fish aggregating device studied by fine-scale acoustic tracking. Aquat Living Resour 26 (1): 63-68. DOI: 10.1016/j.jembe.2012.06.022
Castro JJ, Santiago JA, Santana AT. 2002. A general theory on fish aggregation to floating objects : An alternative to the meeting point hypothesis. Reviews in Fish Biology and Fisheries, 11: 255–77. DOI: 10.1023/A:1020302414472
Castro JJ, Santiago JA, Hernández GV. 1999. Fish associated with fish aggregation devices off the Canary Islands (Central-East Atlantic). In: Massutí, E. & B. Morales-Nin (eds.), Biology and fishery of dolphinfish and related species. Sci. Mar.63(3–4), 191–198. DOI: 10.3989/scimar.1999.63n3-4191
Chaliluddin MA, Aprill RM, Affan J M, Muhammadar A, Rahmadani H, Miswar E, Firdus F. 2018. Efektivitas penggunaan rumpon sebagai daerah penangkapan ikan di Perairan Pusong Kota Lhokseumawe. Depik 7 (2): 119-126. DOI:10.13170/depik.7.2.11322 [Indonesia]
Cody CEL, Moreno G, Restrepo V, Roman MH, Maunder MN. 2018. Recent purse-seine FAD fishing strategies in the eastern Pacific Ocean: What is the appropriate number of FADs at sea?? ICES J Mar Sci 75 (5): 1748-1757. DOI: 10.1093/icesjms/fsy046
Dagorn L, Fre´on P. 1999. Tropical tuna associated with floating objects: a simulation study of the meeting point hypothesis. Canadian Journal of Fisheries and Aquatic Sciences 56 (6), 984–993. DOI: 10.1139/f98-209
Dagorn L, Bez N, Fauvel T, Walker E. 2013. How much do fish aggregating devices (FADs) modify the floating object environment in the ocean? Fish Oceanogr 22 (3): 147-153. DOI: 10.1111/fog.12014
Davies TK, Mees CC, Gulland EJM. 2014. The past, present and future use of drifting fish aggregating devices (FADs) in the Indian Ocean. Mar Policy 45: 163-170. DOI: 10.1016/j.marpol.2013.12.014
DeSylva DP. 1982 Potential for increasing artisanal fisheries production from floating artificial habitats in the Caribbean. (Miami: Rosenstiel School of Marine and Atmospheric Science University of Miami, Florida) pp 156–67. https://aquadocs.org/handle/1834/28457
Dempster T, Taquet M. 2004. Reviews In Fish Biology And Fisheries Fish Aggregation Device (FADs) Research: Gaps In Current Knowledge And Future Directions For Ecological Studies. DOI: 10.1007/s11160-004-3151-x
Doray M, Josse E, Gervain P, Reynal L, Chantrel J. 2011. Joint use of echosounding, fishing and video techniques to assess the structure of fish aggregations around moored fish aggregating devices in martinique (Lesser Antilles). Aquat Living Resour 20 (4): 357-366. DOI: 10.1051/alr:2008004
Doving K, Stabell OB. 2003. Trails in open water: sensory cues in salmon migration. In: Collin SP, Marshall NJ (eds) Sensory processing in aquatic environments. Springer-Verlag, New York, p 39–52. DOI: 10.1007/978-0-387-22628-6_2
Druce BE, Kingsford MJ. 1995. An experimental investigation on the fishes associated with drifting objects in coastal waters of temperate Australia. Bull. Mar. Sci. 57(2), pp. 378-392(15). Bulletin of Marine Science -Miami- 57(2): 378-392
Escalle L, Brouwer S, Pilling G. 2018. Evaluation of dFAD construction materials in the WCPO. WCPFC-SC14-2018/EB-IP-01.
Forget FG, Capello M, Filmalter JD, Govinden R, Soria M, Cowley PD, Dagorn L. 2015. Behaviour and vulnerability of target and non-target species at drifting fish aggregating devices (FADs) in the tropical tuna purse seine fishery determined by acoustic telemetry. Can J Fish Aquat Sci 72 (9): 1398-1405. DOI: 10.1139/cjfas-2014-0458
Fréon P, Dagorn L. 2000. Review of fish associative behavior: Toward a generalization of the meeting point hypothesis. Reviews in Fish Biology and Fisheries, 10, 183–207. DOI: 10.1023/A:1016666108540
Ghazali SM, Montgomery JC, Jeffs AG, Ibrahim Z, Radford CA. 2013. The diel variation and spatial extent of the underwater sound around a fish aggregation device (FAD). Fisheries Research 148 (2013) 9– 17. DOI: 10.1016/j.fishres.2013.07.015
Gooding RM, Magnuson JJ. 1967 Ecological significance of a drifting object to pelagic fishes.Pacific Science, 21: 486–97. DOI:10125/7839/vol21n4-486-497.
Hafinuddin, Thahir MA, Yusfiandayani R, Baskoro MS, Jaya I, Rizal M, Karim A, Misbah IA. 2020. Rumpon atraktor ijuk untuk untuk perikanan rekreasi di kabupaten Jaya Provinsi aceh. Marine Kreatif. 4 (2), 79-84. DOI: 10.35308/jmk.v4i2.3037 [Indonesia]
Hamar B, Bone AH. 2021. Utilization of FAD distribution in south buton waters as a fishing app by purse sein fishermen in Kadatua District, Selatan Buton Regency. J Asian Mult Res for Soc Sci Study 2 (3): 125-131. DOI: 10.47616/jamrems.v2i3.165
Hargiyatno IT, Anggawangsa RF, Wudianto. 2013. Perikanan pancing ulur di Palabuhan ratu: Kinerja teknis alat tangkap. J. Lit. Perikan. Ind, 19(3), 121-130. DOI: 10.15578/jppi.19.3.2013.121-130 [Indonesia]
Hasaruddin H, Ibrahim S, Hussin WMR, Ahmad WMA, Muchlisin ZA. 2015. Artificial aggregating device for fish and squid eggs. AACL Bioflux, 8(5), 832-8
Hasaruddin H, Thahir MA, Yusfiandayani R, Baskoro MS, Jaya I. 2021. Palm fiber as potential material for FADs: Durability enhancement and increasing fish catching for small scale fisheries. IOP Conf Ser Earth Environ Sci 800: 012005. DOI: 10.1088/1755-1315/800/1/012005
Hikmah N, Kurnia M, Amir F. 2016. Pemanfaatan Teknologi Alat Bantu Rumpon untuk Penangkapan Ikan di Perairan Kabupaten Jeneponto. Jurnal IPTEKS Pemanfaatan Sumberdaya Perikanan, 3(6), 455-468. DOI: 10.20956/jipsp.v3i6.3056 [Indonesian]
Holland K, Brill R, Chang R. 1990. Horizontal and vertical movements of yellowfin and bigeye tuna associated with fish aggregating devices. Fish Bull 88(3):493–507. DOI: 1990/883/holland.
Hunter JR. Mitchell CT. 1967. Association of fishes with flotsam in the offshore waters of Central America. Fish. Bull.US 66(1), 13–29
Ibrahim S, Kawamura G, Ambak M. 1990. Effective range of traditional Malaysian FAD as determined by fish-releasing method. Fisheries Research, 9(4): 299–306. DOI: 10.1016/0165-7836(90)90048-Z
Ibrahim S, Ambak MA, Shamsudin L, Samsudin MZ. 1996. Importance of fish aggregating devices (FADs) as substrates for food organisms of fish. 27(4), 265–273. DOI: 10.1016/0165-7836(96)00473-0
Ibrahim S, Hasaruddin H, Hussin WMR, Ahmad WMA. 2014. Durability of coconut fronds as attractors for fish aggregating devices (FADs): an observation based on leaf epidermis structure. AACL Bioflux, 7(3): 225-233. DOI: 264048461
Irawati A, Baso A, Najamuddin. 2021. Bioeconomic analysis of Indian Scad (Decapterus ruselli) in the Bone bay Waters of South Sulawesi. Intl J Environ Agric Biotechnol 6 (1). DOI:10.22161/ijeab.61.15
Itano D, Fukofuka S, Brogan D. 2004. The development, design and recent status of anchored and drifting FADs in the WCPO. Standing Committee on Tuna and Billfish, Majuro, Republic of the Marshall Islands. Information Paper No. INFFTWG-3.17 TH. Corpus ID: 126988901
Jamal M, Ihsan, Sari DP, Nadiarti N. 2021. Biological aspects of shortfin scad (Decapterus macrosoma) in Bulukumba Regency, Gulf of Bone, Indonesia based on purse seine catch. Journal AACL Bioflux, 14 (2). 746-753. DOI: 2021.746-753.pdf
Josse E, Dagorn L, Bertrand A. 2000. Typology and Behaviour Of Tuna Aggregations Around Fish Aggregating Devices From Acoustic Surveys in French Polynesia. Aquatic Living Resource. Vol. 13 : 183?192. DOI: 10.1016/S0990-7440(00)00051-6
Kawamura G, Matsushita T, Nishitai M, Matsuoka T. 1996. Blue and green fish aggregation devices are more attractive to fish. Fisheries Research, 28(1): 99–108. DOI: 10.1016/0165-7836(96)00478-X
Khan AMA, Nasutionc AM, Purbaa NP, Rizala A, Zahidaha, Hamdania H, Dewantia LP, Juniantoa, Nurruhwatia I, Sahidina A, Supriyadia D, Herawatia H, Apriliania IM, Ridwana M, Grayd TS, Jiange M, Arieff M, Millb AC, Polunin. 2020. Oceanographic characteristics at fish aggregating device sites for tuna pole and line fishery in eastern Indonesia. Fish Res 225: 105471. DOI: 10.1016/j.fishres.2019.105471
Kingsford M, Leis J, Shanks A, Lindeman K, Morgan S, Pineda J. 2002. Sensory environments, larval abilities and local self-recruitment. Bull Mar Sci 70(1): 341–375. http://www.rsmas.miami.edu/bms/
Kingsford MJ. 1999. Fish attaction devices (FADs) and experimental designs. In: Massutí, E. and B. Morales-Nin (eds.), Biology and fishery of dolphinfish and related species. Sci. Mar.63(3–4), pp.181–190. DOI: 10.3989/scimar.1999.63n3-4181
Lezama ON, Murua, H, Chust, G, Ruiz J, Chavance P, De Molina AD. 2015. Biodiversity in the by-catch communities of the pelagic ecosystem in the Western Indian Ocean. Biodivers. Conserv. 24, 2647–2671. DOI: 10.1007/s10531-015-0951-3
Matrutty DDP, Paillin JB, Siahainenia SR, Waileruny W, Rutumalessy K. 2019. Productivity and Distribution of Fish Aggregation Devices (FADs) In Outer Ambon Bay Waters, Indonesia. Omni-Akuatika, 17(1), 105–112. DOI: 10.20884/1.oa.2021.17.1.777
Moreno, G., Restrepo, V., Dagorn, L., Hall, M., Murua, J., Sancristobal, I., Grande, M., Le Couls, S., & Santiago, J. (2016). Workshop on the use of biodegradable fish aggregating devices (FADs). ISSF Technical Report 2016-18A. Washington, D.C., USA: International Seafood Sustainability Foundation. https://www.bmis-bycatch.org/references/3n72wxxw .
Moreno G, Dagorn L, Sancho G, Itano D. 2007. Fish behavior from fishers’ knowledge: The case study of tropical tuna around drifting Fish Aggregating Devices (FADs). Can J Fish Aquat Sci 64 (11): 1517-1528. DOI:10.1139/F07-113Moreno G, Jauhary R, Adam SM, Restrepo V. 2018a. Moving away from synthetic materials used at FADs: Evaluating biodegradable ropes degradation. Collect. Vol. Sci. Pap. ICCAT, 74(5), 2192–2198
Moreno G, Murua J, Restrepo V. 2018b. The use of non-entangling FADs to reduce ghost fishing. In FADMO-IWG3-IP-11. Majuro, Republic of the Marshall Islands, p 7.
Moreno G, Orue B, Restrepo V. 2018c. Pilot project to test biodegradable ropes at FADs in real fishing conditions in western Indian Ocean. Collect. Vol. Sci. Pap. ICCAT, 74(5), 2199–2208
Moser ML, Auster PJ, Bichy JB. 1998. Effects of mat morphology on large Sargassum-associated fishes: observations from a remotely operated vehicle (ROV) and free-floating video comcorders. Env. Biol. Fish. 51, 391–398. DOI: 10.1023/A:1007493412854
Murua J, Itano D, Hall M, Dagorn L, Moreno G, Restrepo V. 2016. Advances in the use of entanglement-reducing Drifting Fish Aggregating Devices (DFADs) in tuna purse seine fleets. ISSF technical report 2016–08 international Seafood sustainability foundation, Washington, DC, USA.
Nguyen KQ, Winger PD. 2018. Reviews in Fisheries Science & Aquaculture Artificial Light in Commercial Industrialized Fishing Applications. Reviews in Fisheries Science & Aquaculture, 0(0), 1–21. DOI:10.1080/23308249.2018.1496065
Nurwahidin, Musbir, Kurnia M. 2016. Analisis produktivitas purse seine yang menggunakan alat Bantu penangkapan ikan rumpon di perairan teluk bone. Juornal IPTEKS PSP, 3(6): 518-527. DOI: 10.20956/jipsp.v3i6.3061[Indonesia]
Orue B, Lopez J, Moreno G, Santiago J, Soto M, Murua H. 2019. Aggregation process of drifting fish Aggregating Devices (DFADs) in the western Indian Ocean: Who arrives first, tuna or non-tuna species? Plos One 14 (1): 1-24. DOI: 10.1371/journal.pone.0210435
Orue B, Pennino MG, Lopez J, Moreno G, Santiago J, Ramos L, Murua H. 2020. Seasonal distribution of tuna and non-tuna species associated with drifting Fish Aggregating Devices (DFADs) in the Western Indian ocean using fishery-independent data. Front Mar Sci 7 (441): 1-17. DOI: 10.3389/fmars.2020.00441
Popper AN, Fay RR, Platt C, Sand O. 2003. Sound detection mechanisms and capabilities of teleost fishes. In: Collin SP, Marshall NJ (eds) Sensory processing in aquatic environments. Springer-Verlag, New York, p 3–38. DOI: 10.1007/978-0-387-22628-6_1
Rountree RA. 1989. Association of fishes with fish aggregation devices: effects of structure size on fish abundance. Bull. Mar.Sci. 44(2), pp.960–972
Rountree RA. 1990. Community structure of fishes attracted to shallow water fish aggregation devices off South Carolina, U.S.A. Environ Biol Fish 29 (4): 241-262. DOI: 10.1007/BF00001183
Rumpa A, Najamuddin, Safruddin, Hajar MAI. 2022. Fish behavior based on the effect of variations in oceanographic condition variations in FADs Area of Bone Bay Waters, Sulawesi, Indonesia. Biodiversitas. 23(4). DOI: 10.13057/biodiv/d2304xx
Rumpa A, Isman K. 2018. Desain purse seine yang ideal Berdasarkan tingkah laku ikan layang (Decapterus macarellus) dan ikan tongkol deho (Auxis thazard) di Rumpon. Prosiding Simposium Nasional Kelautan dan Perikanan V. Universitas Hasanuddin, Makassar. [Indonesia]
Sadubun EA, Labaro IL, Kayodoe ME. 2015. Durasi keberadaan ikan di bawah cahaya lampu yang diamati melalui CCTV di perairan Teluk Manado, Sulawesi Utara. Jurnal Ilmu Dan Teknologi Perikanan Tangkap, 2(2), 94–100. DOI:10.35800/jitpt.2.2.2015.10401 [Indonesia]
Simbolon D, Jeujanan B, Wiyono ES. 2013. Efektivitas Pemanfaatan Rumpon Dalam Operasi Penangkapan Ikan Di Perairan Maluku Tenggara. Jurnal Amanisal PSP FPIK Unpatti-Ambon. 2.(2), 19 – 31. [Indonesia]
Tamrin, Rumpa A. 2018, Sejarah Perkembangan Alat Tangkap dan Karakteristik Teknis Pukat Cincin Di Kabupaten Bone. Silabi Education-Jurnal Ilmu Pengetahuan Umum. 7 (1). https://www.academia.edu/44884589/ [Indonesia]
Taquet M. 2013. Fish aggregating devices (FADs): good or bad fishing tools? A question of scale and knowledge. Aquat. Living Resour. 26, 25–35. DOI: 10.1051/alr/2013043
Taquet M, Sancho G, Dagorn L, Gaertner JC, Itano D, Aumeeruddy R, Wendling B, Peignon C. 2007 Characterizing fish communities associated with drifting fish aggregating devices ( FADs) in the Western Indian Ocean using underwater visual surveys. Aquatic Living Resources, 20(4): 331–41. DOI: 10.1051/alr:2008007
Tenningen M, Macaulay GJ, Rieucau G, Korneliussen RJ. 2017. Behaviours of Atlantic herring and mackerel in a purse-seine net, observed using multibeam sonar. ICES J Mar Sci 74 (1): 359-368.. DOI:10.1093/icesjms/fsw159
Tsounis L, Kehayias G. 2021. Alteration of the feeding behaviour of an omnivorous fish, Scardinius acarnanicus (Actinopterygii: Cypriniformes: Cyprinidae), in the presence of fishing lights. Acta Ichthyologica et Piscatoria, 51(2) 2021, 131–138 . DOI: 10.3897/aiep.51.e63299
Wang Y, Zhou C,, Xu L, Rong Wan, Shi J, Wang X, Tang H, Wang H, Yu W, Wang K. 2021. Degradability evaluation for natural material fibre used on fish aggregation devices (FADs) in tuna purse seine fishery. Elsevier. Aquaculture and Fisheries. (3) 6: 376-381. DOI: 10.1016/j.aaf.2020.06.014
Wibiksana C. 2014. Perbandingan Produktivitas antara rumpon dengan atraktor ijuk dan rumpon dengan atraktor daun kelapa di Pulau Tunda Banten. Skripsi Bogor: Fakultas Perikanan dan Ilmu Kelautan Institut Pertanian Bogor. [Indonesia]
Widodo AA, Wudianto, Sadiyah L, Mahiswara, Proctor C, Cooper S. (2020). Investigation On Tuna Fisheries Associated With Fish Aggregating Devices (FADs) In Indonesia. Fish.Res. J. (26).2. 97-105 DOI: 10.15578/ifrj.26.2.2020.97-105
Wudianto, Widodo AN, Mahiswara. 2019. Kajian pengelolaan rumpon laut dalam sebagai alat bantu Penangkapan tuna di perairan indonesia. Journal Of Indonesian Fisheries Policy, 11(1), 23–37. DOI: 10.15578/jkpi.1.1.2019.23-37 [Indonesia]
Yusfiandayani R, Baskoro MS, Monintja D. 2015 impact of fish aggregating device on sustainable capture fisheries. The 1st International Symposium on Aquatic Product Processing 2013. DOI:10.18502/kls.v1i0.107
Yusfiandayani R. 2013. Fish aggregating devices in Indonesia: Past and present status on sustainable capture fisheries. Galaxea. J Coral Reef Stud 5: 260-268. DOI: 10.3755/galaxea.15.260
Yusfiandayani R. 2017. Perbedaan bahan atraktor terhadap hasil tangkapan ikan pelagis dengan menggunakan payang bugis di perairan pasauran, provinsi banten. Jurnal teknologi perikanan dan kelautan. 1(1). 47-60 DOI: 10.24319/jtpk.1.47-60. [Indonesia]
Yusfiandayani R 2004. Study on the aggregation mechanism of small pelagic fish around rumpon and its fisheries of development in Pasauran Waters, Province of Banten. Unpublished doctoral’s thesis, Bogor Agricultural University, Bogor. [Indonesia]
Zhou C, Xu L, Tang H, Hu F, He P, Kumazawa T, Wang X, Wan R, Dong S. 2019. Identifying the design alternatives and flow interference of tuna purse seine by the numerical modelling approach. J Mar Sci Eng 7 (11): 405. DOI: 10.3390/jmse7110405
Zudaire I. 2017. Testing designs and identify options to mitigate impacts of drifting FADs on the ecosystem. In IOTC-2017-SC20-INF07. DOI: 10.2826/79656
Zudaire I, Tolotti M, Murua J, Capello M, Andres M, Cabezas O, Go~ni N. 2019. Preliminary results of the BIOFAD project: Testing designs and identify options to mitigate impacts of drifting fish aggregating devices on the ecosystem. In IOTC-2019-WPEB15-34

Most read articles by the same author(s)