Inferring probable distributional gaps and climate change impacts on the medically important viper Echis leucogaster in the western Sahara-Sahel: An ecological niche modeling approach

##plugins.themes.bootstrap3.article.main##

IDRISS BOUAM
https://orcid.org/0000-0002-4394-9297
FAROUK KHELFAOUI
https://orcid.org/0000-0001-5089-5074
MESSAOUD SAOUDI
https://orcid.org/0000-0001-7904-4847

Abstract

Abstract. Bouam I, Khelfaoui F, Saoudi M. 2022. Inferring probable distributional gaps and climate change impacts on the medically important viper Echis leucogaster in the western Sahara-Sahel: An ecological niche modeling approach. Biodiversitas 23: 5175-5183. Knowledge of biodiversity distribution and how climate change may affect species across the Sahara-Sahel is scarce despite it harboring both high biodiversity and a high rate of endemism. As ectotherms, snakes are particularly vulnerable to climate change and susceptible to range shifts and demographic changes driven by climate change. Ecological niche models are a common method for predicting the probability of the occurrence of species and future range shifts induced by climate change. This study examines the probable gaps in the distribution of the white-bellied saw-scaled viper, Echis leucogaster, and the potential influence of climate change on its future geographic range in the western Sahara-Sahel. The currently predicted environmentally suitable areas fitted well with the known geographical range of the species showed relative congruence with the Sahara-Sahel ecoregion delineations and identified areas without known occurrences. In the future, the environmental conditions for the occurrence of E. leucogaster are predicted to increase, as the environmentally suitable areas will potentially experience an increase in their proportion. Future projections also showed that the potentially suitable areas might undergo moderate southward shifts during the late twenty-first century. The results of the present study significantly expand our knowledge on the potential distribution of E. leucogaster and provide valuable insights to guide future sampling efforts and conservation planning for the species.

##plugins.themes.bootstrap3.article.details##

References
Ashcroft MB. 2010. Identifying refugia from climate change. J Biogeogr 37(8): 1407-1413. DOI: 10.1111/j.1365-2699.2010.02300.x
Allouche O, Tsoar A, Kadmon R. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43(6): 1223-1232. DOI: 10.1111/j.1365-2664.2006.01214.x
Anderson RP. 2012. Harnessing the world’s biodiversity data: promise and peril in ecological niche modeling of species distributions. Ann NY Acad Sci 1260(1): 66-80. DOI: 10.1111/j.1749-6632.2011.06440.x
Anderson RP. 2013. A framework for using niche models to estimate impacts of climate change on species distributions. Ann NY Acad Sci 1297(1): 8-28. DOI: 10.1111/nyas.12264
Arnold EN, Robinson MD, Carranza S. 2009. A preliminary analysis of phylogenetic relationships and biogeography of the dangerously venomous Carpet Vipers, Echis (Squamata, Serpentes, Viperidae) based on mitochondrial DNA sequences. Amphibia-Reptilia 30(2): 273-282. DOI: 10.1163/156853809788201090
Bakhouche B, Escoriza D, Sánchez-Vialas A, Khalil D, Calvo-Revuelta M. 2019. Malpolon Insignitus (Geoffroy de Saint-Hilaire, 1809) in the Hoggar mountains (Southeast Algeria). Afr Herp News 71: 29-35.
Barata M, Perera A, Harris DJ et al. 2011. New observations of amphibians and reptiles in Morocco, with a special emphasis on the eastern region. Herpetol Bull 116: 4-14.
Barry JP. 1991. Bioclimat et végétation des montagnes du Sahara central et du Sahara occidental. Rev Geogr Alp 79(1): 55-70.
Bouam I, Benmokhtar E, Guechi R. 2019. A fortuitous encounter with the Vulnerable Vipera latastei: a new locality record from Algeria and distributional range extension. Herpetol Notes 12: 809-812.
Brito JC, Durant SM, Pettorelli N et al. 2018. Armed conflicts and wildlife decline: Challenges and recommendations for effective conservation policy in the Sahara?Sahel. Conserv Lett 11(5): e12446. DOI: 10.1111/conl.12446
Brito JC, Fahd S, Geniez P, Martínez-Freiría F, Pleguezuelos JM, Trape JF. 2011. Biogeography and conservation of viperids from North-West Africa: An application of ecological niche-based models and GIS. J Arid Environ 75(11): 1029-1037. DOI: 10.1016/j.jaridenv.2011.06.006
Brito JC, Godinho R, Martínez?Freiría F et al. 2014. Unravelling biodiversity, evolution and threats to conservation in the Sahara?Sahel. Biol Rev 89(1): 215-231. DOI: 10.1111/brv.12049
Brito JC, Tarroso P, Vale CG et al. 2016. Conservation Biogeography of the Sahara?Sahel: additional protected areas are needed to secure unique biodiversity. Divers Distrib 22(4): 371-384. DOI: 10.1111/ddi.12416
Brown JL. 2004. SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol Evol 5(7): 694-700. DOI: 10.1111/2041-210X.12200
Brown JL, Bennett JR, French CM. 2017. SDMtoolbox 2.0: the next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ 5: e4095. DOI: 10.7717/peerj.4095
Carranza S, Arnold EN, Wade E, Fahd S. 2004. Phylogeography of the false smooth snakes, Macroprotodon (Serpentes, Colubridae): mitochondrial DNA sequences show European populations arrived recently from Northwest Africa. Mol Phylogenet Evol 33(3): 523-532. DOI: 10.1016/j.ympev.2004.07.009
Clusella-Trullas S, Blackburn TM, Chown SL. 2011. Climatic predictors of temperature performance curve parameters in ectotherms imply complex responses to climate change. Am Nat 177(6): 738-751. DOI: 10.1086/660021
De Marco Jr P, Nóbrega CC. 2018. Evaluating collinearity effects on species distribution models: An approach based on virtual species simulation. PLoS ONE 13(9): e0202403. DOI: 10.1371/journal.pone.0202403
Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR. 2008. Impacts of climate warming on terrestrial ectotherms across latitude. P Natl Acad Sci-Biol 105(18): 6668-6672. DOI: 10.1073/pnas.0709472105
Dormann CF, Elith J, Bacher S et al. 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36(1): 27-46. DOI: 10.1111/j.1600-0587.2012.07348.x
Drake JM, Richards RL. 2018. Estimating environmental suitability. Ecosphere 9(9): e02373. DOI: 10.1002/ecs2.2373
Durant SM, Pettorelli N, Bashir S et al. 2012. Forgotten biodiversity in desert ecosystems. Science 336(6087): 1379-1380. DOI: 10.1126/science.336.6087.1379
El-Gabbas A, Baha El Din S, Zalat S, Gilbert F. 2016. Conserving Egypt's reptiles under climate change. J Arid Environ 127: 211-221. DOI: 10.1016/j.jaridenv.2015.12.007
El-Gabbas A, Dormann CF. 2018. Wrong, but useful: regional species distribution models may not be improved by range-wide data under biased sampling. Ecol Evol 8(4): 2196-2206. DOI: 10.1002/ece3.3834
Elith J, Graham CH, Anderson RP et al. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29(2): 129-151. DOI: 10.1111/j.2006.0906-7590.04596.x
Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ. 2011. A statistical explanation of MaxEnt for ecologists. Divers Distrib 17(1): 43-57. DOI: 10.1111/j.1472-4642.2010.00725.x
Ellis EC, Klein Goldewijk K, Siebert S, Lightman D, Ramankutty N. 2010. Anthropogenic transformation of the biomes, 1700 to 2000. Global Ecol Biogeogr 19(5): 589-606. DOI: 10.1111/j.1466-8238.2010.00540.x
ESRI 2016. ArcGIS, version 10.5. Environmental Systems Research Institute, California.
Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE. 2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci Model Dev 9(5): 1937-1958. DOI: 10.5194/gmd-9-1937-2016
Fajardo J, Corcoran D, Roehrdanz PR, Hannah L, Marquet PA. 2020. GCM compareR: A web application to assess differences and assist in the selection of general circulation models for climate change research. Methods Ecol Evol 11(5): 656-663. DOI: 10.1111/2041-210X.13360
Feng X, Park DS, Liang Y, Pandey R, Pape? M. 2019. Collinearity in ecological niche modeling: Confusions and challenges. Ecol Evol 9(18): 10365-10376. DOI: 10.1002/ece3.5555
Ferro CAT, Stephenson DB. 2011. Extremal dependence indices: Improved verification measures for deterministic forecasts of rare binary events. Weather Forecast 26(5): 699-713. DOI: 10.1175/WAF-D-10-05030.1
Fick SE, Hijmans RJ. 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37(12): 4302-4315. DOI: 10.1002/joc.5086
Foden W, Mace GM, Vié JC et al. 2009. Species susceptibility to climate change impacts. In: Vié JC, Hilton-Taylor C, Stuart SN (eds). Wildlife in a Changing World. An Analysis of the 2008 IUCN Red List of Threatened Species. IUCN, Gland.
Fois M, Cuena-Lombraña A, Fenu G, Bacchetta G. 2018. Using species distribution models at local scale to guide the search of poorly known species: Review, methodological issues and future directions. Ecol Model 385: 124-132. DOI: 10.1016/j.ecolmodel.2018.07.018
Freitas I, Fahd S, Velo-Antón G, Martínez-Freiría F. 2018. Chasing the phantom: biogeography and conservation of Vipera latastei-monticola in the Maghreb (North Africa). Amphibia-Reptilia 39(2): 145-161. DOI: 10.1163/15685381-17000197
GBIF 2022. GBIF occurrence download. DOI: 10.15468/dl.zmbusk
Geniez P. 2015. Serpents d’Europe, d’Afrique du Nord et du Moyen-Orient. Delachaux et Niestlé, Paris.
Hampe A, Rodríguez-Sánchez F, Dobrowski S, Hu FS, Gavin DG. 2013. Climate refugia: from the Last Glacial Maximum to the twenty-first century. New Phytol 197(1): 16-18.
Hortal J, de Bello F, Diniz-Filho JAF, Lewinsohn TM, Lobo JM, Ladle RJ. 2015. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu Rev Ecol Evol S 46: 523-549. DOI: 10.1146/annurev-ecolsys-112414-054400
Indahl UG, Næs T, Liland KH. 2018. A similarity index for comparing coupled matrices. J Chemometr 32(10): e3049. DOI: 10.1002/cem.3049
Jiménez-Valverde A. 2012. Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Global Ecol Biogeogr 21(4): 498-507. DOI: 10.1111/j.1466-8238.2011.00683.x
Kane D, Goodwin S, Verspui GJ, Tump A, Martínez del Mármol Marin G. 2019. Reptile diversity of southern Morocco: range extensions and the role of the Djebel Ouarkziz as a biogeographical barrier. Herpetol Notes 12: 787-793.
Kass JM, Muscarella R, Galante PJ, Bohl CL, Pinilla-Buitrago GE, Boria RA, Soley-Guardia M, Anderson RP. 2021. ENMeval 2.0: Redesigned for customizable and reproducible modeling of species’ niches and distributions. Methods Ecol Evol 12(9): 1602-1608. DOI: 10.1111/2041-210X.13628
Keppel G, Mokany K, Wardell-Johnson GW, Phillips BL, Welbergen JA, Reside AE. 2015. The capacity of refugia for conservation planning under climate change. Front Ecol Environ 13(2): 106-112. DOI: 10.1890/140055
Kery M. 2002. Inferring the absence of a species: a case study of snakes. J Wildlife Manage 66(2): 330-338. DOI: 10.2307/3803165
Koleska D, Karhánek J, Martinez del Marmol Marin G, Sassoè-Pognetto M. 2018. New records of Echis leucogaster in Morocco. Herpetol Notes 11: 655-657.
Kramer-Schadt S, Niedballa J, Pilgrim JD et al. 2013. The importance of correcting for sampling bias in MaxEnt species distribution models. Divers Distrib 19(11): 1366-1379. DOI: 10.1111/ddi.12096
Linder HP, de Klerk HM, Born J, Burgess ND, Fjeldså J, Rahbek C. 2012. The partitioning of Africa: Statistically defined biogeographical regions in sub?Saharan Africa. J Biogeogr 39(7): 1189-1205. DOI: 10.1111/j.1365-2699.2012.02728.x
Liu C, White M, Newell G. 2016. On the selection of thresholds for predicting species occurrence with presence-only data. Ecol Evol 6(1): 337-348. DOI: 10.1002/ece3.1878
Liz AV, Gonçalves DV, Velo-Antón G, Brito JC, Crochet PA, Rödder D. 2022. Adapt biodiversity targets to climate change. Science 376(6593): 589-590. DOI: 10.1126/science.abo7381
Lobo JM, Jiménez-Valverde A, Real R. 2008. AUC: a misleading measure of the performance of predictive distribution models. Global Ecol Biogeogr 17(2): 145-151. DOI : 10.1111/j.1466-8238.2007.00358.x
Maritz B, Penner J, Martins M et al. 2016. Identifying global priorities for the conservation of vipers. Biol Conserv 204: 94-102. DOI: 10.1016/j.biocon.2016.05.004
Martínez del Marmol Marin G, Rebollo Fernandez B. 2012. An important new record of Echis leucogaster Roman, 1972 from Morocco. Herpetol Notes 5: 229-231.
Martínez del Mármol Marin G, Rebollo Fernández B, Mazuch T. 2012. Reflexions about potential distribution of Echis leucogaster in North Africa. http://moroccoherps.com/en/reflexions-about-potential-distribution-of-echis-leucogaster-in-north-africa/
Martínez del Mármol G, Harris DJ, Geniez P, de Pous P, Salvi D. 2019. Amphibians and Reptiles of Morocco. Edition Chimaira, Frankfurt.
Mediani M, Brito JC, Fahd S. 2015. Atlas of the amphibians and reptiles of northern Morocco: updated distribution and patterns of habitat selection. Basic Appl Herpetol 29: 81-107.
Merow C, Smith MJ, Edwards Jr TC et al. 2014. What do we gain from simplicity versus complexity in species distribution models? Ecography 37(12): 1267-1281. DOI: 10.1111/ecog.00845
Merow C, Smith MJ, Silander Jr JA. 2013. A practical guide to MaxEnt for modeling species' distributions: what it does, and why inputs and settings matter. Ecography 36(10): 1058-1069. DOI: 10.1111/j.1600-0587.2013.07872.x
Mizsei E, Üveges B, Vági B, Szabolcs M, Lengyel S, Pfliegler WP, Nagy ZT, Tóth JP. 2016. Species distribution modelling leads to the discovery of new populations of one of the least known European snakes, Vipera ursinii graeca, in Albania. Amphibia-Reptilia 37(1): 55-68. DOI: 10.1163/15685381-00003031
Morales NS, Fernández IC, Baca-González V. 2017. MaxEnt’s parameter configuration and small samples: are we paying attention to recommendations? A systematic review. PeerJ 5: e3093. DOI: 10.7717/peerj.3093
Naia M, Brito JC. 2021. Ecoregions of the Sahara-Sahel: characteristics and conservation status. CIBIO/InBIO. Biodeserts Report EN-03.
Needleman RK, Neylan IP, Erickson T. 2018. Potential environmental and ecological effects of global climate change on venomous terrestrial species in the wilderness. Wild Environ Med 29(2): 226-238. DOI: 10.1016/j.wem.2017.11.004
Nori J, Carrasco PA, Leynaud GC. 2014. Venomous snakes and climate change: ophidism as a dynamic problem. Climatic Change 122: 67-80. DOI : 10.1007/s10584-013-1019-6
Peterson AT, Soberón J. 2012. Species distribution modeling and ecological niche modeling: getting the concepts right. Nat Conservação 10(2): 102-107.
Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME. 2017. Opening the black box: An open?source release of Maxent. Ecography 40(7): 887-893. DOI: 10.1111/ecog.03049
Phillips SJ, Dudík M. 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31(2): 161-175. DOI: 10.1111/j.0906-7590.2008.5203.x
Pook CE, Joger U, Stümpel N, Wüster W. 2009. When continents collide: Phylogeny, historical biogeography and systematics of the medically important viper genus Echis (Squamata: Serpentes: Viperidae). Mol Phylogenet Evol 53(3): 792-807. DOI: 10.1016/j.ympev.2009.08.002
Radosavljevic A, Anderson RP. 2014. Making better Maxent models of species distributions: complexity, overfitting and evaluation. J Biogeogr 41(4): 629-643. DOI: 10.1111/jbi.12227
Revault P. 1996. Ecology of Echis ocellatus and peri-urban bites in Ouagadougou. Toxicon 34(2): 144.
Riahi K, van Vuuren DP, Kriegler E et al. 2017. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environ Chang 42: 153-168. DOI: 10.1016/j.gloenvcha.2016.05.009
Roubicek AJ, VanDerWal J, Beaumont LJ, Pitman AJ, Wilson P, Hughes L. 2010. Does the choice of climate baseline matter in ecological niche modelling? Ecol Model 221(19): 2280-2286. DOI: 10.1016/j.ecolmodel.2010.06.021
Scavetta J. 2019. maxentools, version 1.1.0. DOI: 10.5281/zenodo.3381023.svg
Shcheglovitova M, Anderson RP. 2013. Estimating optimal complexity for ecological niche models: A jackknife approach for species with small sample sizes. Ecol Model 269: 9-17. DOI: 10.1016/j.ecolmodel.2013.08.011
Sillero N, Arenas-Castro S, Enriquez?Urzelai U et al. 2021. Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling. Ecol Model 456: 109671. DOI: 10.1016/j.ecolmodel.2021.109671
Spawls S, Branch B. 2020. The Dangerous Snakes of Africa. Bloomsbury Publishing, London.
Thuiller W, Guéguen M, Renaud J, Karger DN, Zimmermann NE. 2019. Uncertainty in ensembles of global biodiversity scenarios. Nat Commun 10: 1446. DOI : 10.1038/s41467-019-09519-w
Trape JF. 2018. Partition d’Echis ocellatus Stemmler, 1970 (Squamata, Viperidae), avec la description d’une espèce nouvelle. B Soc Herpétol Fr 167: 13–34.
Trape JF, Mané Y. 2006. Guide des Serpents d'Afrique Occidentale: Savane et Désert. IRD Éditions, Paris.
Tsairi H, Bouskila A. 2004. Ambush site selection of a desert snake (Echis coloratus) at an oasis. Herpetologica 60(1): 13-23. DOI: 10.1655/20-47
Uetz P, Freed P, Aguilar R, Hošek J. 2022. The Reptile Database. http://www.reptile-database.org
Vale CG, Brito JC. 2015. Desert-adapted species are vulnerable to climate change: Insights from the warmest region on Earth. Global Ecol Conserv 4: 369-379. DOI: 10.1016/j.gecco.2015.07.012
van Proosdij ASJ, Sosef MSM, Wieringa JJ, Raes N. 2016. Minimum required number of specimen records to develop accurate species distribution models. Ecography 39(6): 542-552. DOI: 10.1111/ecog.01509
Velasco JA, González-Salazar C. 2019. Akaike information criterion should not be a “test” of geographical prediction accuracy in ecological niche modelling. Ecol Inform 51: 25-32. DOI: 10.1016/j.ecoinf.2019.02.005
Walther GR, Post E, Convey P et al. 2002. Ecological responses to recent climate change. Nature 416: 389-395. DOI: 10.1038/416389a
Williams M. 2014. Climate Change in Deserts. Past, Present and Future. Cambridge University Press, New York.
Wunderlich RF, Lin YP, Anthony J, Petway JR. 2019. Two alternative evaluation metrics to replace the true skill statistic in the assessment of species distribution models. Nat Conserv 35: 97-116. DOI: 10.3897/natureconservation.35.33918
Yañez-Arenas C, Townsend Peterson A, Rodríguez-Medina K, Barve N. 2016. Mapping current and future potential snakebite risk in the new world. Climatic Change 134: 697-711. DOI: 10.1007/s10584-015-1544-6
Zacarias D, Loyola R. 2019. Climate change impacts on the distribution of venomous snakes and snakebite risk in Mozambique. Climatic Change 152: 195-207. DOI: 10.1007/s10584-018-2338-4