Comparative study of morphophysiological responses among cowpea and long beans plants under drought stress condition

##plugins.themes.bootstrap3.article.main##

ELLY SYAFRIANI
KARTIKA RESTU SUSILO
RAHMI SRI SAYEKTI
MUHAMMAD HABIB WIDYAWAN
NABILAH SALMA KHOIRUNNISA
MUTIARI RAHMADHANI

Abstract

Abstract. Syafriani E, Susilo KR, Sayekti RS, Widyawan MH, Khoirunnisa NS, Rahmadhani M. 2022. Comparative study of morphophysiological responses among cowpea and long beans plants under drought stress condition. Biodiversitas 23: 5507-5518. Long bean plants are generally more susceptible to drought stress than cowpea plants. One of the promising solutions is through plant breeding to produce genetically modified long bean plants resistant to drought stress by crossing with cowpeas. Parental selection is the initial stage of the plant breeding program. This stage was performed by selecting parental varieties based on the desired superior characteristics, including morphological and physiological characteristics, as well as, yield production. Unfortunately, the comparison between long bean plants and cowpea plants is not well-studied. Therefore, the aim of this study was to analyze the morphophysiological similarities and differences between long beans and cowpeas to withstand drought stress. A two-factorial randomized block design was used in this study and consisted of 2 factors (plant varieties and type of drought stress). The plant varieties used in this study are 7 long bean plants and 7 cowpea plants. While the level of drought stress were: T0 (watering every day), T1 (every 5 days), and T2 (every 10 days). The observational data from morphophysiological characters indicated that long bean plants were more tolerant to drought stress than cowpea plants. Interestingly, one of the cowpea varieties (C2) had the highest proline contents (20.27 µmol/gram of leaves sample) compared to other varieties. Hence, the C2 variety can be considered a candidate for further studies. Meanwhile, all the tested 7 varieties of long bean plants showed varying adaptability, possibly due to the genetic diversity of each variety against drought stress.

##plugins.themes.bootstrap3.article.details##

References
Agbicodo E, Fatokun C, Muranaka S, Visser R, Linden C. 2009. Breeding drought tolerant cowpea: constraints, accomplishments, and future prospects. Euphytica. 167, 353–370.
Ali, N., M. Seleiman, and M. Akmal. 2021. Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects. Plants (10): 259.
Ashari A, Nurchayani E, Qudus HI, Zulkifli Z. 2018. Analisis kandungan prolin planlet jeruk keprok batu 55 (Citrus reticulata blanco var crenatifolia) setelah diinduksi larutan atonik dalam kondisi cekaman kekeringan secara in vitro. Analit: Analytical and Environmental Chemistry, 3(1): 69-78.
Badan Pusat Statistik Indonesia. 2019. Statistik Pertanian. Direktorat Pengembangan Usaha Hortikultura, Direktori Ekspor Impor Hortikultura. Jakarta: Badan Pusat Statistik.
Bharath P, Gahir S, Raghavendra AS. 2021. Abscisic acid-induced stomatal closure: An important component of plant defense against abiotic and biotic stress. Front. Plant Sci. 4 (12). Doi: 10.3389/fpls.2021.615114.
Brini F, Hanin M, Lumbreras V, Amara I, Khoudi H, Hassairi A, Pages M, Masmoudi K. 2007. Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana. Plant Cell Rep, 26(11). Doi: 10.1007/s00299-007-0412.
Castro-Camba R, Sanchez C, Vidal N, Vielba JM. 2022. Interaction of gibberellins with phytohormones and their role in stress responses. Horticulturae, 8(3): 241. https://doi.org/10.3390/horticulturae8030241.
Fang Y, Xiong L. 2015. General mechanisms of drought response and their application in drought resistance improvement in plants. Cell. Mol. Life Sci. 72, 673-689. Doi: 10.1007/s00018-014-1767-0
Fatokun, C. A., Boukar, O., and Muranaka, S. (2012). Evaluation of cowpea (Vigna unguiculata L. Walp.) germplasm lines for tolerance to drought. Plant Genet. Resour. 10, 171–176.
Gupta R, Chakrabarty SK. 2013. Gibberelic acid in plant: Still a mysteryy unresolved. Plant Signal Behav, 8. http://d.doi.org/10.4161/psb.25504.
Hall, AE. 2004. Breeding for adaptation to drought and heat in cowpea. Eur. J. Agron. 21, 447-454.
Juairiah T. 2014. Studi karakteristik stomata beberapa jenis tanaman revegetasi di lahan pascapenambangan timah di Bangka. UPT Balai Konservasi Tumbuhan, Kebun Raya Cibodas-LIPI. 213-217.
Khan NZ, Lal S, Ali W, Aasim M, Mumtaz S, Kamil A, Bibi NS. 2020. Distribution and classification of dehydrins in selected plant using bioinformatics approach. Iranian J Biotech, 18(4). Doi: 10.30498/IJB.2020.2680.
Kurniawati S, Khumaida N, Ardie SW, Hartati NS, Sudarmonowati E. 2014. Pola akumulasi prolin dan pollamin beberapa aksesi tanaman terung pada cekaman kekeringan. J. Agron. Indonesia 42 (2): 36-141.
Kusvuran S. 2012. Influence of drought stress on growth, ion accumulation and antioxidative enzymes in okragenotypes. International J. Agric. Biol. 14: 401-406.
Lynch JP, Brown KM, 2012. New roots for agriculture: exploiting the root phenome. Phil Trans R Soc B. 367: 1598-1604.
Mahdalena Z. 2020. Pengaruh tingkat kekeringan terhadap pertumbuhan generatif kultivar kacang tunggak (Vigna unguiculata L.). Ziraa’ah, Volume 45 (3): 347-353.
Medeiros DB, Silva ECD, Santos HRB, Pacheco CM, Musser RDS, Nogueira RJMC. 2012. Physiological and biochemical responses to drought stress in Barbados cherry. Brazilian Society of Plant Physiology, 24 (3): 181-92.
Meena M, Divyanshu K, Kumar S, Swapnil P, Zehra A, Shukla V, Yadav M, Upadhyay RS. Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions. Heliyon, 5. http://doi.org/10.1016.j.heliyon.2019.e02952.
Milosevic D. 2013. Characterization of Vigna unguiculata (L.) collected from Sothern Thailand and its tolerance to blackeye cowpea mosaic virus. [Thesis]. Prince of Songkla University. [Thailand]
Murray MR, Graether SP. 2022. Physiological, structural, and functional insights into the cryoprotectan of membrans by the dehydrins. Front. Plant Sci 28. https://doi.org/10.3389/fpls.2022.886525.
Perez-Martin A, Michelazzo C, Torres-Ruiz JM, Flexas J, Fernandez JE, Sebastian L, Diaz-Espejo A. 2014. Regulation of photosynthesis and stomatal and mesophyll conductance under water stress and recovery in olive trees: Correlation with gene expression of carbonic anhydrase and aquaponins. J Exxp Bot. 10.1093/jxb/eru160.
Purwanto P, Wijonarko BR, Tarjoko T. 2019. Perubahan karakter biokimia dan fisiologi tanaman kacang hijau pada berbagai kondisi cekaman kekeringan. Jurnal Kultivasi Vol.18 (1): 827-836.
Riduan A, Aswidinoor H, Koswara J, Sudarsono. 2005. Toleransi sejumlah kultivar kacang tanah terhadap cekaman kekeringan. Hayati 12(1): 28-34.
Rosawanti P. 2016. The growth of soybean root on drought stress. Jurnal Daun, Vol.3, No.1: 21-28.
Sayekti RS, Prajitno D, Toekidjo. 2012. Karakterisasi delapan aksesi kacang tunggak (Vigna unguiculata (L.) Walp.) asal Daerah Istimewa Yogyakarta. Vegetalika, Vol.1 (1).
Shavrukov Y, Kurishbayev A, Jatayev S, Shvidchenko V, Zotova L, Koekemoer F, de Groot S, Soole K, Langridge P. 2017. Early flowering as a drought escape mechanism in plants: How can it aid wheat production?. Front. Plant Sci. 8:950. Doi: 0.3389/pls.2017.01950.
Shohat H, Cheriker H, Kilambi HV, Eliaz NI, Blum S, Amsellem Z, Tarkoska D, Aharoni A, Eshed Y, Weiss D. 2021. Inhibition of gibberellin accumulation by water deficiency promotes fast and long-term ‘drought avoidance’ responses in tomato. New Phytologist, 232: 1985-1998. Doi: 10.1111/nph.17709.
Sunaryo W. 2002. Regenerasi dan evaluasi variasi somaklonal kedelai (Glycine max (L.) Merr.) hasil kultur jaringan serta seleksi terhadap cekaman kekeringan menggunakan simulasi polyethilene glycol (PEG) [Tesis]. Bogor: Faperta. Institut Pertanian Bogor. [Indonesian]
Trustinah. 1998. Biologi Kacang Tunggak. Monograf Balitkabi, No.3: 1-19.
Trustinah, Radjit BS, Prasetiaswati N, Harnowo D. 2014. Adopsi varietas unggul kacang hijau di sentra produksi. Iptek Tanaman Pangan 9 (1): 24-38.
Trustinah, Kasno A, Mejaya MJ. 2017. Keragaman dan pengelompokkan sumber daya genetik kacang tunggak. Jurnal Penelitian Pertanian Tanaman Pangan. 1 (2): 1-7.
Vukovic R, Camagajevac IS, Vukovic A, Sunic K, Begovic L, Mlinaric S, Sekulic R, Sabo N, Spanic V. 2022. Physiological, biochemical and molecular response of different winter wheat varieties under drought stress at germination and seedling growth stage. Antioxidants 11: 693. https://doi.org/10.3390/antiox11040693.
Wang J, Zheng R, Bai S, Gao X, Liu M, Yan W. 2015. Mongolian almon (Prunus mongolica Maxim): the morpholophysio-logical, biochemical and transcriptomic response to drought stress. Plos One (10(4): e0124442. Doi: 1371/journal.pone.0124442.
Zeng W, Melotto M, He SY. 2010. Plant stomata: a checkpoint of host immunity and pathogen virulence. Current Option in Biotechnology, 21: 599-603.
Zhang S, Huang L, Yan A, Liu Y, Liu B, Yu C, Zhang A, Schiefelbein J, Gan Y. 2016. Multiple phytohormones promote root hair elongation by regulating a similar set of genes in the root epidermis in Arabidopsis. J Exp Bot, 67(22): 6363-6372.

Most read articles by the same author(s)