Composition and abundance level of pest mites in jasmine gambier (Jasminum officinale) plantation of Purbalingga, Central Java, Indonesia affected by some abiotic factors

##plugins.themes.bootstrap3.article.main##

BAMBANG HERU BUDIANTO
NURTJAHJO DWI SASONGKO

Abstract

Abstract. Budianto BH, Sasongko ND. 2022. Composition and abundance level of pest mites in jasmine gambier (Jasminum officinale) plantation of Purbalingga, Central Java, Indonesia affected by some abiotic factors. Biodiversitas 23: 5227-5232. The decline in productivity of gambier jasmine flowers is not only caused by the reduction of gambier jasmine land area but also insect, caterpillar and pest mite attacks. Types of pest mites and their population dynamics are closely related to abiotic factor conditions such as temperature, humidity, rainfall, season, an abundance of predatory mites and types of plant cultivars. The study aimed to determine the types of pest mites and some abiotic factors that affect their abundance in gambier jasmine plants. The research method was a survey with a purposive sampling technique. Sampling locations were in Cipawon village, Bukateja sub-district, Purbalingga district, and Central Java Province, Indonesia. The obtained data were analyzed by analysis of variance at an error rate of 0.05. The types of pest mites that were identified consisted of 8 species, namely Brevipalpus phoenicis, B. californicus, B. papayensis, B. obovatus, Tetranychus urticae, T. kanzawai, T. cinnabarinus and Tyrophagus putrescentiae. The type of pest mite always found at each sampling point was B. phoenicis, with an abundance range of 0.027 to 0.067. The results of the analysis of the variance of pest mite abundance in gambier jasmine plantations showed that abundance of individuals between pest mite species did not significantly differ at all sampling points. Based on multivariate analysis, it was noted that trichome density had the most influence on pest mite abundance with a population model of Y = 0.399 + 0.043a + 0.012b.

##plugins.themes.bootstrap3.article.details##

References
Ahmad–Hosseini, M., Khanjani, M., & Karamian, R. 2020. Resistance of some commercial walnut cultivars and genotypes to Aceria tristriata (Nalepa) (Acari: Eriophyidae) and its correlation with some plant features. Pest Management Science, 76(3), 986–995. https://doi.org/10.1002/ps.5607
Akyazi, R., Ueckermann, E. A., & Liburd, O. E. 2017. New Report of Brevipalpus yothersi (Prostigmata: Tenuipalpidae) on Blueberry in Florida. Florida Entomologist, 100(4), 731–739. https://doi.org/10.1653/024.100.0420
Budianto, B. H., & Munadjat, A. 2012. Family Phytoseiidae at Various Densities Around Cassava Plants (Manihot esculenta Crantz ). Jurnal HPT Tropika, 12(2), 129–137.
Budianto, B. H., Rokhmani, & Basuki, E. 2021. Several ecological factors that determine the survival of temperature resistant Phytoseius amba. IOP Conference Series: Earth and Environmental Science, 746(1). https://doi.org/10.1088/1755-1315/746/1/012029
Castro-Resendiz, C. A., Otero-Colina, G., Quijano-Carranza, J. Á., Martínez-Meyer, E., González-Hernández, H., Cuellar-Zambrano, C., & Soto-Rojas, L. 2021. Potential areas for the establishment of citrus leprosis virus vectors, Brevipalpus spp., in Mexico. Experimental and Applied Acarology, 84(2), 365–388. https://doi.org/10.1007/s10493-021-00631-5
Di Palma, A., Tassi, A. D., & Kitajima, E. W. 2020. On some morphological and ultrastructural features of the insemination system in five species of the genus Brevipalpus (Acari: Tenuipalpidae). Experimental and Applied Acarology, 81(4), 531–546. https://doi.org/10.1007/s10493-020-00526-x
Eziah, V. Y., Buba, R. B., & Afreh-Nuamah, K. 2017. Susceptibility of two spotted spider mite Tetranychus urticae KOCH (Acari; Tetranychidae) to some selected miticides in the Greater Accra Region of Ghana. International Journal of Biological and Chemical Sciences, 10(4), 1473. https://doi.org/10.4314/ijbcs.v10i4.1
Fayaz, B. A., Khanjani, M., & Rahmani, H. 2016. Tyrophagus putrescentiae (Schrank) (Acari: Acaridae) from western Iran with a key to Iranian species of the genus. Acarina, 24(1), 61–76. https://doi.org/10.21684/0132-8077.2016.24.1.61.76
Goleva, I., & Zebitz, C. P. W. 2013. Suitability of different pollen as alternative food for the predatory mite Amblyseius swirskii (Acari, Phytoseiidae). Experimental and Applied Acarology, 61(3), 259–283. https://doi.org/10.1007/s10493-013-9700-z
Hao, D. J., Su, P., Pfammatter, J., Liu, Q., Fan, B. Q., Wang, Y., & Gu, T. Z. 2016. Morphological and genetic characteristics of Brevipalpus lewisi (Acari: Tenuipalpidae) and comparison with other three Brevipalpus species. International Journal of Acarology, 42(1), 34–40. https://doi.org/10.1080/01647954.2015.1114022
Hewitt, L. C., Shipp, L., & Buitenhuis, R. 2015. Seasonal climatic variations influence the efficacy of predatory mites used for control of western flower thrips in greenhouse ornamental crops. Exp Appl Acarol (2015) 65:435–450, https://doi.org/10.1007/s10493-014-9861-4
Hodson, A. K. & B. D. L. 2019. Effects of cultivar and leaf traits on the abundance of Pacific spider mites in almond orchards. Arthropod Plant Interaction, 13, 453–463. https://link.springer.com/article/10.1007/s11829-018-9648-3
Ihsan, M., Puspitarini, R. D., Afandhi, A., & Fernando, I. 2021. Abundance and diversity of edaphic mites (Arachnida, acari) under different forest management systems in indonesia. Biodiversitas, 22(9), 3685–3692. https://doi.org/10.13057/biodiv/d220911
Kean, A. M., Nielsen, M. C., Davidson, M. M., Butler, R. C., & Vereijssen, J. 2019. Host plant influences establishment and performance of Amblydromalus limonicus, a predator for Bactericera cockerelli. Pest Management Science, 75(3), 787–792. https://doi.org/10.1002/ps.5179
Laranjeira, F. F., Silva, S. X. de B., de Andrade, E. C., Almeida, D. de O., da Silva, T. S. M., Soares, A. C. F., & Freitas-Astúa, J. 2015. Infestation dynamics of Brevipalpus phoenicis (Geijskes) (Acari: Tenuipalpidae) in citrus orchards as affected by edaphic and climatic variables. Experimental and Applied Acarology, 66(4), 491–508. https://doi.org/10.1007/s10493-015-9921-4
Leite, G. L. D., Veloso, R. V. S., Matioli, A. L., Soares, M. A., & Lemes, P. G. 2022. Seasonal mite population distribution on caryocar brasiliense trees in the cerrado domain. Brazilian Journal of Biology, 82(April). https://doi.org/10.1590/1519-6984.236355
Nain, J., & Rathee, M. 2017. Effect of leaf morphology and phytochemistry of okra on development and survival of two spotted spider mite, Tetranychus urticae Koch . Indian Journal of Entomology, 79(1), 32. https://doi.org/10.5958/0974-8172.2017.00008.6
Nishida, S., Naiki, A., & Nishida, T. 2005. Morphological variation in leaf domatia enables coexistence of antagonistic mites in Cinnamomum camphora. Canadian Journal of Botany, 83(1), 93–101. https://doi.org/10.1139/B04-152
Qur’ania, A., & Sarinah, I. 2018. Identification of jasmine flower (Jasminum sp.) based on the shape of the flower using sobel edge and k-nearest neighbour. IOP Conference Series: Materials Science and Engineering, 332(1). https://doi.org/10.1088/1757-899X/332/1/012008
Saccaggi, D. L., Ueckermann, E. A., Toit, I. Du, & Ngubane-Ndhlovu, N. P. 2017. First Records of Brevipalpus lewisi McGregor (Acari: Trombidiformes: Tenuipalpidae) in South Africa, with Notes on Distribution and Field Ecology. African Entomology, 25(2), 523–528. https://doi.org/10.4001/003.025.0523
Samia A. Yasin, M. S. K. 2019. The Effectiveness of Phytochemical Components and Climatic Factors on Population Fluctuation of the Spider Mite, Tetranychus urticae Koch on Sweet Pea and Pea Crops. Journal of Applied Plant Protection, 8(1), 15–21. https://doi.org/10.21608/japp.2019.59842
Savi, P. J., Gonsaga, R. F., de Matos, S. T. S., Braz, L. T., de Moraes, G. J., & de Andrade, D. J. 2021. Performance of Tetranychus urticae (Acari: Tetranychidae) on three hop cultivars (Humulus lupulus). Experimental and Applied Acarology, 84(4), 733–753. https://doi.org/10.1007/s10493-021-00643-1
Shibuya, T., Iwahashi, Y., Suzuki, T., Endo, R., & Hirai, N. 2020. Light intensity influences feeding and fecundity of Tetranychus urticae (Acari: Tetranychidae) through the responses of host Cucumis sativus leaves. Experimental and Applied Acarology, 81(2), 163–172. https://doi.org/10.1007/s10493-020-00496-0
Sudo, M., & Osakabe, M. 2013. Stellate hairs on leaves of a deciduous shrub Viburnum erosum var. punctatum (Adoxaceae) effectively protect Brevipalpus obovatus (Acari: Tenuipalpidae) eggs from the predator Phytoseius nipponicus (Acari: Phytoseiidae). Experimental and Applied Acarology, 60(3), 299–311. https://doi.org/10.1007/s10493-012-9648-4
Weinblum, N., Cna’ani, A., Yaakov, B., Sadeh, A., Avraham, L., Opatovsky, I., & Tzin, V. 2021. Tomato Cultivars Resistant or Susceptible to Spider Mites Differ in Their Biosynthesis and Metabolic Profile of the Monoterpenoid Pathway. Frontiers in Plant Science, 12(February). https://doi.org/10.3389/fpls.2021.630155

Most read articles by the same author(s)