Physio-biochemical, molecular characterization, and phage susceptibility of Ralstonia pseudosolanacearum associated with tomato (Solanum lycopersicum) and eggplant (Solanum melongena)

##plugins.themes.bootstrap3.article.main##

ANGGI ANWAR HENDRA NURDIKA
https://orcid.org/0000-0002-6895-2687
TRIWIDODO ARWIYANTO
SRI SULANDARI
https://orcid.org/0000-0003-3882-0795

Abstract

Abstract. Nurdika AAH, Arwiyanto T, Sulandari S. 2022. Physio-biochemical, molecular characterization, and phage susceptibility of Ralstonia pseudosolanacearum associated with tomato (Solanum lycopersicum) and eggplant (Solanum melongena). Biodiversitas 23: 5149-5158. Ralstonia solanacearum is a plant pathogen that causes bacterial wilt diseases in various plant species. The high diversity of these bacteria strains is the basis for their grouping into the R. solanacearum species complex (RSSC). RSSC associated with tomato and eggplant in Indonesia are commonly known as R. solanacearum. It is necessary to characterize R. solanacearum which infects tomatoes and eggplant according to the latest classification. The high diversity of strains also affects their susceptibility to bacteriophages as host-specific biocontrol agents. This research was conducted by characterizing R. solanacearum isolates from different locations based on their physio-biochemical properties, biovar, virulence, phylotype, sequevar, and susceptibility to 12 bacteriophage isolates. The phylotype identification was carried out using multiplex polymerase chain reaction with several specific primers for R. solanacearum. Amplification and sequencing based on the egl gene region were carried out to determine the sequevar of R. solanacearum isolates. As a result, isolates RS18, RS19, RS23, and RS24 had morphological, physio-biochemical, and biovar characteristics according to Ralstonia pseudosolanacearum phylotype I, biovar 3. The two most virulent isolates, RS19 and RS24 were identified as sequevar 14. RS19 and RS24 isolates were susceptible to 7 of the 12 bacteriophage isolates used in this study. Variations of bacteriophage isolates resulted in different plaque morphology which could be attributed to R. pseudosolanacearum susceptibility and bacteriophage virulence.

##plugins.themes.bootstrap3.article.details##

References
Arwiyanto T. 2014. Ralstonia solanacearum, Biologi, Penyakit yang Ditimbulkan, dan Pengelolaannya. Gadjah Mada University Press, Yogyakarta.
Arwiyanto T., Nurcahyanti SD., Indradewa D., and Widada J. 2015. Grafting local commercial tomato cultivars with H-7996 and Eg-203 to suppress bacterial wilt (Ralstonia solanacearum) in Indonesia. Acra Hortic, 1069 : 173 – 178. https://doi.org/10.17660/ActaHortic.2015.1069.24
Ausubel FM, Roger B, Robert EK, David DM, Seidman JG, John AS, and Kevin S. 2010. Current Protocols in Molecular Biology. John Wiley & Sons, New Jersey.
Bae YJ, Jing W, Hyoung JL, Eun JJ, Senthilkumar M, Eunsook C, and Seon WL. 2012. Biocontrol Potential of a Lytic Bacteriophage PE204 against Bacterial Wilt of Tomato. Journal of Microbiology and Biotechnology 22 (12): 1613–20. https://doi.org/10.4014/jmb.1208.08072.
Barua P and Palash DN. 2019. Isolation of Bacteriophages Infecting Ralstonia Solanacearum Causing Bacterial Wilt Disease in Naga Chilli (Capsicum Chinense Jacq.). International Journal of Current Microbiology and Applied Sciences 8 (2): 927–37. https://doi.org/10.20546/ijcmas.2019.802.106.
Bhunchoth AN. Phironrit CL, Kawasaki T, Yamada T, and Chatchawankanphanich O. 2018. Isolation and Characterization of Bacteriophages That Infect Ralstonia Solanacearum in Thailand. Acta Horticulturae 1207: 155–61. https://doi.org/10.17660/ActaHortic.2018.1207.20.
Carstensen GD, Venter SN, Wingfield MJ, and Coutinho TA. 2017. Two Ralstonia Species Associated with Bacterial Wilt of Eucalyptus. Plant Pathology 66 (3): 393–403. https://doi.org/10.1111/ppa.12577.
Cho H, Eun SS, Young KL, Seungdon L, Seon WL, Ara J, Byoung ML, Jeong GK, and Ingyu H. 2018. Analysis of Genetic and Pathogenic Diversity of Ralstonia Solanacearum Causing Potato Bacterial Wilt in Korea. Plant Pathology Journal 34 (1): 23–34. https://doi.org/10.5423/PPJ.FT.09.2017.0203.
Dy RL, Rigano LA, and Peter CF. 2018. Phage-based biocontrol strategies and their application in agriculture and aquaculture. Biochem. Soc. Trans 46(6):1605-1613.
Fegan M, and Prior P. 2006. Diverse Members of the Ralstonia Solanacearum Species Complex Cause Bacterial Wilts of Banana. Australasian Plant Pathology 35 (2): 93–101. https://doi.org/10.1071/AP05105.
Fujiwara A, Mariko F, Ryosuke H, Takeru K, Makoto F, and Takashi Y. 2011. Biocontrol of Ralstonia Solanacearum by Treatment with Lytic Bacteriophages. Applied and Environmental Microbiology 77 (12): 4155–62. https://doi.org/10.1128/AEM.02847-10.
Gar?ia RO, Jim PK, and Lindsey T. 2019. Ralstonia Solanacearum Species Complex: A Quick Diagnostic Guide. Plant Health Progress 20 (1): 7–13. https://doi.org/10.1094/PHP-04-18-0015-DG.
Genin S, and Timothy PD. 2012. Pathogenomics of the Ralstonia Solanacearum Species Complex. Annual Review of Phytopathology 50: 67–89. https://doi.org/10.1146/annurev-phyto-081211-173000.
Hayward AC. 1964. Characteristics of Pseudomonas solanacearum. J. Appl. Bacteriol, 27: 265-277.
He LY, Sequeira L, Kelman A. 1983. Characteristic of strains of Pseudomonas solanacearum from China. Plant Dis, 67: 1357-1361
Hemelda NM, Ramadhani S, and Sony S. 2019. Genetic Diversity of Ralstonia Solanacearum, a Phytopathogenic Bacterium Infecting Horticultural Plants in Java, Indonesia. Biodiversitas 20 (2): 364–72. https://doi.org/10.13057/biodiv/d200209.
Huang Q, Xuerui Y, and Jaw FW. 2012. Improved Biovar Test for Ralstonia Solanacearum. Journal of Microbiological Methods 88 (2): 271–74. https://doi.org/10.1016/j.mimet.2011.12.007.
Ji P, Caitilyn A, Amilcar SP, Jian Y, John GE, Jeffrey BJ, and M. TM. 2007. New Diversity of Ralstonia Solanacearum Strains Associated with Vegetable and Ornamental Crops in Florida. Plant Disease 91 (2): 195–203. https://doi.org/10.1094/PDIS-91-2-0195.
Kalpage MD, and De Costa DM. 2014. Isolation of bacteriophages and determination of their efficiency in controlling Ralstonia solanacearum causing bacterial wilt of tomato. Tropical Agricultural Research 26(1) : 140 – 151.
Kelman A, Harman GL, and Hayward AC. 1994. Bacterial Wilt. CAB International, Oxford.
Loc-Carrillo C. and Abedon ST. 2011. Pros and cons of phage therapy. Bacteriophage 1:111-114.
Jimenez M, Alejandra M, Vinson PD, and Melanie LLI. 2019. “Characterization of Ralstonia Solanacearum Species Complex Strains Causing Bacterial Wilt of Tomato in Louisiana, USA.” Canadian Journal of Plant Pathology 41 (3): 329–38. https://doi.org/10.1080/07060661.2019.1584588.
Jurczak-Kurek A, Tomasz G, Bozena NF, Sylwia B, Aleksandra D, Gracja T, Agnieszka N, et al. 2016. Biodiversity of Bacteriophages: Morphological and Biological Properties of a Large Group of Phages Isolated from Urban Sewage. Scientific Reports 6 (September): 1–17. https://doi.org/10.1038/srep34338.
Kalpage, M. D., and D. M. De Costa. 2015. “Isolation of Bacteriophages and Determination of Their Efficiency in Controlling Ralstonia Solanacearum Causing Bacterial Wilt of Tomato.” Tropical Agricultural Research 26 (1): 140. https://doi.org/10.4038/tar.v26i1.8079.
Laeshita P. and Triwidodo A. 2017. Resistance test of several tomato varieties to bacterial wilt diseases caused by Ralstonia solanacearum. Jurnal Perlindungan Tanaman Indonesia 21(1):51-53.
Li Y, Ji F, Hailong L, Lin W, Tom H, Xihong L, and Junbin H. 2016. Genetic Diversity and Pathogenicity of Ralstonia Solanacearum Causing Tobacco Bacterial Wilt in China. Plant Disease 100 (7): 1288–96. https://doi.org/10.1094/PDIS-04-15-0384-RE.
Lin CH, Tsai KC, Prior P, and Wang JF. 2014. Phylogenetic Relationships and Population Structure of Ralstonia Solanacearum Isolated from Diverse Origins in Taiwan. Plant Pathology 63 (6): 1395–1403. https://doi.org/10.1111/ppa.12209.
Liu Y, Dousheng W, Qiuping L, Shuting Z, Yuanman T, Gaofei J, Shili L, and Wei D. 2017. The Sequevar Distribution of Ralstonia Solanacearum in Tobacco-Growing Zones of China Is Structured by Elevation. European Journal of Plant Pathology 147 (3): 541–51. https://doi.org/10.1007/s10658-016-1023-6.
Mansfield J, Stephane G, Shimpei M, Vitaly C, Malinee S, Pamela R, Max D, et al. 2012. Top 10 Plant Pathogenic Bacteria in Molecular Plant Pathology. Molecular Plant Pathology 13 (6): 614–29. https://doi.org/10.1111/j.1364-3703.2012.00804.x.
Namisy A, Jaw RC, Jaime P, Elmahdy M, Mohammed E, and Mohamed R. 2019. Screening Cultivated Eggplant and Wild Relatives for Resistance to Bacterial Wilt (Ralstonia Solanacearum). Agriculture (Switzerland) 9 (7): 1–11. https://doi.org/10.3390/agriculture9070157.
Navitasari L, Tri J, Rudi HM, dan Triwidodo A. 2020. Rhizobacterial community structure in grafted tomato plants infected by Ralstonia solanacearum. Biodiversitas 21 (10) : 4888 – 4895.
Paudel S, Shefali D, Anne MA, and Mohammad A. 2020. Taxonomy and Phylogenetic Research on Ralstonia Solanacearum Species Complex: A Complex Pathogen with Extraordinary Economic Consequences. Pathogens 9 (11): 1–26. https://doi.org/10.3390/pathogens9110886.
Pawaskar J, Joshi MS, Sudhir N, Agale RC, and Balasaheb SKKV. 2014. Physiological and Biochemical Characters of Ralstonia Solanacearum. International Journal of Research in Agricultural Sciences 1 (6): 2348–3997.
Rakha Mohamed, Ahmed N, Jaw RC, Mohammed E, Elmahdy M, Naglaa T, Jaime P, Mariola P, and Dalia T. 2020. Development of Interspecific Hybrids between a Cultivated Eggplant Resistant to Bacterial Wilt (Ralstonia Solanacearum) and Eggplant Wild Relatives for the Development of Rootstocks. Plants 9 (10): 1–13. https://doi.org/10.3390/plants9101405.
Razia S, Chowdhury MSM, Aminuzzaman FM, Sultana N, and Islam M. 2021. Morphological, Pathological, Biochemical and Molecular Characterization of <i>Ralstonia Solanacearum</i> Isolates in Bangladesh. American Journal of Molecular Biology 11 (4): 142–64. https://doi.org/10.4236/ajmb.2021.114012.
Ren, Minhua, Jingyan Zhang, Xiaodong Cui, Ronghua Chen, and Qiongguang Liu. 2022. “Diversity of Ralstonia Solanacearum Strains from Tomato in the South of Jiangxi Province.” Journal of South China Agricultural University 43 (1): 67–76. https://doi.org/10.7671/j.issn.1001-411X.202101041.
Saputra R, Triwidodo A. Arif W. 2015. Uji aktivitas antagonistik beberapa isolat Bacillus spp. terhadap penyakit layu bakteri (Ralstonia solanacearum) pada beberapa varietas tomat dan identifikasinya. Pros Sem Nas Masy Biodiv Indon 1(5) : 1116 – 1122.
Safni I, Ilse C, Paul DV, Mark F, Lindsay S, and Ulrike K. 2014. Polyphasic Taxonomic Revision of the Ralstonia Solanacearum Species Complex: Proposal to Emend the Descriptions of Ralstonia Solanacearum and Ralstonia Syzygii and Reclassify Current R. Syzygii Strains as Ralstonia Syzygii Subsp. Syzygii Subsp. Nov., R. S. International Journal of Systematic and Evolutionary Microbiology 64: 3087–3103. https://doi.org/10.1099/ijs.0.066712-0.
Sagar V, Jeevalatha A, Sarita M, Chakrabarti SK, Gurjar MS, Arora RK, Sharma S, Bakade RR, and Singh BP. 2014. Potato Bacterial Wilt in India Caused by Strains of Phylotype I, II, and IV of Ralstonia Solanacearum. European Journal of Plant Pathology 138 (1): 51–65. https://doi.org/10.1007/s10658-013-0299-z.
Santiago TR, Lopes CA, Caetano-Anollés G, and Mizubuti ESG. 2017. Phylotype and Sequevar Variability of Ralstonia Solanacearum in Brazil, an Ancient Centre of Diversity of the Pathogen. Plant Pathology 66 (3): 383–92. https://doi.org/10.1111/ppa.12586.
Schaad NW, Jones JB., and Chun W. 2001. Laboratory Guide for Identification of Plant Pathogenic Bacteria. APS Press, Minnesota
Siregar BA, Giyanto, Sri HH, Iskandar ZS, and Budi T. 2021. Diversity of Ralstonia Pseudosolanacearum, the Causal Agent of Bacterial Wilt on Eucalyptus pellita in Indonesia. Biodiversitas 22 (6): 2538–45. https://doi.org/10.13057/biodiv/d220664.
Xue H, Rosa L, and Alberto PM. 2020. Insights into the root invasion by the plant pathogenic bacterium Ralstonia solanacearum. MDPI Plants, 9(516):1-9.

Most read articles by the same author(s)