Antibiotic resistance pattern of Extended-Spectrum ?-Lactamase (ESBL) producing Escherichia coli isolated from broiler farm environment in Pasuruan district, Indonesia




Abstract. Yanestria SM, Dameanti FNAEP, Musayannah BG, Pratama JWA, Witaningrum AM, Effendi MH, Ugbo EN. 2022. Antibiotic resistance pattern of Extended-Spectrum ?-Lactamase (ESBL) producing Escherichia coli isolated from broiler farm environment in Pasuruan district, Indonesia. Biodiversitas 23: 4460-4465. Escherichia coli is one of the bacteria that can be used as an indicator of environmental pollution. This bacterium has the ability to become an antimicrobial-resistant bacterium that impacts public health. The antimicrobial ability can develop into a bacterium that produces extended-spectrum ?-lactamase (ESBL). The purpose of this study was to reveal the occurrence of extended-spectrum ?-lactamase (ESBL) producing E. coli from a broiler farm environment in Pasuruan district and to describe the phenotypic pattern of E. coli producing ESBL that has been detected. A total of 175 samples were used in this study consisting of 115 samples of coop swabs and 65 samples of wastewater around the farm. The samples were isolated and identified to find E. coli by using different culture media viz. McConkey agar (MCA), eosin methylene blue agar (EMBA), Gram staining, indole test, methyl red Voges Proskauer (MR-VP), citrate, and triple sugar iron agar (TSIA). Detection of ESBL using the double disc synergy test (DDST) according to standard Clinical and Laboratory Standards Institute procedures and the VITEK®2 compact apparatus. The results of ESBL confirmation with DDST and VITEK®2 showed that 16 (9.14%) of the 175 environmental samples confirmed E. coli produced ESBL. The results of the VITEK®2 test also produced a phenotypic pattern of resistance properties of ESBL-producing E. coli and found 12 types of resistance patterns. The combination of “AM AMP ATM KZ CTX CRO CIP” and “AM AMP ATM KZ CTX CRO GM CIP SXT” are the 2 most common resistance patterns (18.75%), while the other 10 resistance patterns occur at the same level (6.25%). The data presented here confirmed the presence of ESBL-producing E. coli in the farm environment, which can contribute to the dissemination of MDR bacteria in the environment if not monitored. Therefore, the presence of ESBL-producing E. coli in Pasuruan is worrisome since it can lead to an impact on human health.


Alvarez, S. M., Sanz, S., Olarte, C., Sanz, R.H., Carvalho, I., Fernandez, R.F., Burguet, A.C., Fernandez, J.L., Zarazaga, M., and Torres, C. (2022). Antimicrobial Resistance in Escherichia coli from Broiler Farm Environment, with Detection of SHV-12-Producing Isolates. Antibiotics, 11: 444.
Ansharieta, R., Effendi, M.H., Plumeriastuti, H. (2021). Genetic Identification Of Shiga Toxin Encoding Gene From Cases Of Multidrug Resistance (MDR) Escherichia coli Isolated From Raw Milk. Trop. Anim. Sci. J. 44 (1):10–15.
Aworh, M. K., Kwaga, J., Okolocha, E., Harden, L., Hull, D., Hendriksen, R.S., and Thakur, S. (2020). Extended-Spectrum ?-Lactamase-Producing Escherichia coli Among Humans, Chickens and Poultry Environments in Abuja, Nigeria. One Health Outlook, 2: 8.
Biomerieux. (2021). Vitex 2 Microbiology with Confidence. [20 April 2021]
Calistri P, Iannetti, S., Danzetta M.L., Narcisi V., Cito, F., Sabatino, D.D., Bruno, R., Sauro, F., Atzeni, M., Carvelli, A., and Giovannini, A. (2013). The components of ‘One World-One Health’ approach. Transbound Emerg Dis, 60: 4-13.
Chang, H.H., Cohen, T., Grad, Y. H., Hanage, W. P., O’Brien, T. F., and Lipsitch, M. (2015). Origin and Proliferation of Multiple-Drug Resistance in Bacterial Pathogens. Microbiol Mol Biol Rev, 79: 101-116.
CLSI. (2020). Performance Standards for Antimicrobial Susceptibility Testing. 30th ed. CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute.
Damayanti, T. and Purwantisari, S. (2020). Deteksi Escherichia coli dalam Sampel Obat Tradisional Jenis Jamu Bubuk di Balai Besar Pengawasan Obat dan Makanan (BBPOM) Semarang. Jurnal Akademika Biologi, 9 (2): 15-19.
Deshpande, P.R., Rajan, S., Sudeepthi, B.L., and Nasir, C.P.A. (2011). Patient-Reported Outcomes: A New Era in Clinical Research. Perspect Clin Res, 2 (4): 137-144.
Effendi, M.H., Harijani, N., Budiarto, Triningtya, N.P., Tyasningsih, W., and Plumeriastuti, H. (2019). Prevalence of Pathogenic Escherichia coli Isolated from Subclinical Mastitis in East Java Province, Indonesia. Indian Vet J, 96 (3): 22-25
Effendi MH, Tyasningsih W, Yurianti,YA, Rahmahani J, Harijani N, Plumeriastuti H. 2021. Presence of multidrug resistance (MDR) and extended beta-spectrum beta-lactamase (ESBL) of Escherichia coli isolated from cloacal swabs of broilers in several wet markets in Surabaya, Indonesia. Biodiversitas 22 (1): 304-310. DOI: 10.13057/biodiv/d220137
[FAO] Food and Agriculture Organization. (2018). Antimicrobial Resistance in the Environment. http:/ [28 April 2021].
Franz, E., Veenman, C., van, H.A., Husman, A.R., Blaak, H. (2015). Pathogenic Escherichia coli Producing Extended-Spectrum ?-Lactamases Isoated from Surface Water and Wastewater. Scientific Reports, 5 : 19.
Gregova, G, Kmetova, M., Kmet, V., Venglovsky, J., and Feher. (2012). Antibiotic Resistance of Escherichia coli Isolated from Poultry a Slaughterhouse. Annals of Agricultural Environment Medicine, 19 (1): 75-77.
Guo, S., Tay, M.Y.F., Aung, K.T., Seow, K.L.G., Ng, L.C., Purbojati, R.W., Drautz-Moses, D.I., Schuster, S.C., and Schlundt, J. (2019). Phenotipic and Genotypic Characterization of Antimicrobial Resistant Escherichia coli Isolated from Ready-to-Eat Food in Singapore Using Disk Diffusion, Broth Microdilution and Whole Genome Sequencing Methods. Food Control 99: 89-97.
Harijani, N., Oetama, S.J.T., Soepranianondo, K., Effendi, M.H., Tyasningsih. W. (2020). Biological Hazard on Multidrug Resistance (MDR) of Escherichia Coli Collected From Cloacal Swab of Broiler Chicken on Wet Markets Surabaya. Indian J Forensic Med Toxicol 14(4): 3239-3244. DOI: 10.37506/ijfmt.v14i4.12125
Hu, Y., Yang, X., Qin, J., Lu, N., Cheng, G., Wu, N., Pan, Y., Li, J., Zhu, L., Wang, X., Meng, Z., Zhao, F., Liu, D., Ma, J., Qin, N., Xiang, C., Xiao, Y., Li, L., Yang, H., Wang, J., Yang, R., Gao, G.F., Wang, J., and Zhu, B. (2013). Metagenome-wide Analysis of Antibiotic Resistance Genes in A Large Cohort of Human Gut Microbiota. Nat Commun, 4: 2151.
Ibrahim, M.A., Emeash, H.H., Ghoneim, N.H., and Abdel-Halim, M.A. (2013). Seroepidemiologi Studies on Poultry Salmonellosis and Its Public Health Importance. J World’s Poult Res, 3 (1): 18-23.
Lukman, D.W., Sudarwanto, M., Purnawarman, T., Latif, H., Pisestyani, H., Sukmawinata, E., and Akineden, O. (2016). CTX-M-1 dan CTX-M-55 Producing Escherichia coli Isolated from Broiler Feses in Poultry Slaughterhouse, Bogor, West Java Province. Global Advanced research Journal of Medicine and Medical Science, 5 (12): 287-291.
Masruroh, C.A., Sudarwanto, M.B., and Latif, H. (2016). The Occurance of Extended Spectrum B-Lactamase-Producing Escherichia coli from Broiler Feces in Bogor. Jurnal Sain Veteriner, 34 (1): 42-49.
Mu’arofah, B., Arizandy, R.Y., Utomo, B., and Kuntaman, K. (2020). Detection of Extended Spectrum B-Lactamase (ESBL) Gene Pattern of Enterobacteriaceae in Broiler Chicken Meat Sold in Traditional Market in The East Surabaya. STRADA Jurnal Ilmiah Kesehatan, 9 (1): 12-19.
Musa, L., Proietti, P.C., Branciari, R., Menchetti, L., Bellucci, S., Ranucci, D., Marenzoni, M.L., and Franciosini, M.P. (2020). Antimicrobial Susceptibility of Escherichia coli and ESBL-Producing Escherichia coli Diffusion in Conventional, Organic and Antibiotic-Free Meat Chickens at Slaughter". Animals, 10 (7): 1215.
Nathisuwan S., Burgess, D.S., and Lewis II, J.S. (2001). Extendedspectrum ?-lactamases: Epidemiology, Detection And Treatment. Pharmacotherapy, 21 (8): 920-928.
Newton, R. J., McLellan, S. L., Dila, D. K., Vineis, J. H., Morrison, H. G., Eren, A. M., and Sogin, M.L. (2015). Sewage Re?ects the Microbiomes of Human Populations. MBio, 6 (2): e02574.
Niasono, A.B., Latif, H., and Purnawarman, T. (2019). Resistensi Antibiotik terhadap Bakteri Escherichia coli yang Diisolasi dari Peternakan Ayam Pedaging di Kabupaten Subang, Jawa Barat. Jurnal Veteriner, 20 (2): 187-195.
Paterson, D.L. and Bonomo, R. A. (2005). Extended-Spectrum ?- Lactamases: A Clinical Update. Clin Microbiol Rev,18 (4): 657-686.
Permatasari, D.A., Witaningrum, A.M., Wibisono, F.J., Effendi, M.H. (2020). Detection and prevalence of multidrug-resistant Klebsiella pneumoniae strains isolated from poultry farms in Blitar, Indonesia. Biodiversitas, 21 (10): 4642-4647.
Putra, A. R., Effendi, M.H., and Kurniawan, R. (2020). Investigation of Extended Spectrum Beta-Lactamase (ESBL) Producing Escherichia coli by Vitek-2 on Dairy Cows in Surabaya, Indonesia. Biochem Cell Arch, 20 (2): 6773-6777.
Rahmahani J, Salamah, Mufasirin, Tyasningsih W, and Effendi MH. 2020. Antimicrobial Resistance Profile of Escherichia coli From Cloacal Swab of Domestic Chicken in Surabaya Traditional Market. Biochem Cell Arch 20 (1): 2993-2997. DOI: 10.35124/bca.2020.20. S1.2993
Rahman, S., Ahmad, S., and Khan, I. (2018). Incidence of ESBL-Producing-Escherichia coli in Poultry Farm Environment and Retail Poultry Meat. Pak Vet L, 39 (1): 116-120.
Riwu KHP, Effendi MH, Rantam FA. (2020). A review of extended-spectrum ?-Lactamase (ESBL) producing Klebsiella pneumoniae and Multidrug-Resistant (MDR) on companion animals. Syst Rev Pharm, 11 (7): 270-277.
Rodroo, J., Intanon, M., Kreausukon, K., Kongkaew, A, Bender J., and Awainanont, N. (2021). Occurance of Extended-Spectrum Beta-Lactamase Producing E. coli in Broiler Farm Workers and The Farm Environment in Chiang Mai-Lumphun, Tahiland. Vet Integr Sci, 19 (1): 23-35
Shah, D. H., Board, M.M., Crespo, R, Guard, J, Paul, N.C., and Faux, C. (2020). The Occurance of Salmonella, Extended-Spectrum ?-Lactamase Producing Escherichia coli and Carbapenem Resistant Non-Fermenting Gram- Negative Bacteria in a Backyard Poultry Flock Environment. Zoonoses Public Health, 00 :1-12.
Ueda, S., Ngan, B.T., Huong, B.T., Hirai, I., Tuyen le, D., and Yamamoto, Y. (2015). Limited Transmission of BlaCTX-M-9-Type-Positive Escherichia coli between Humans and Poultry in Vietnam. Antimicrob. Agents Chemother, 59: 3574–3577.
Varga, C., Guerin, M.T., Brash, M.L., Siavic, D., Boerlin, P., and Susta, L. (2019). Antimicrobial Resistance in Campylobacter jejuni and Campylobacter coli Isolated from Small Poultry Flocks in Ontario, Canada: A Two-year Surveillance Study. PLoS ONE, 14 (8): e0221429.
Wardhana, D.K., Effendi, M.H., Harijani, N., and Ooi, H. (2020). Detection of Extended-Spectrum-Beta-Lactamase (ESBL) Producing Escherichia coli in Meat Chicken from Traditional Market in Surabaya, East Java, Indonesia. Indian Journal of Public Health Research & Development, 11 (1): 1353-1357.
Wibisono, F.J., Sumiarto, B., Untari. T., Effendi, M.H, Permatasari, D.A., and Witaningrum, A.M. (2020a). CTX Gene of Extended Spectrum Beta-Lactamase (ESBL) Producing Escherichia coli on Broilers in Blitar, Indonesia. Sys Rev Pharm, 11 (7) : 396-403.
Wibisono, F. J., Sumiarto, B., Untari, T., Effendi, M.H., Permatasari, D.A., and Witaningrum, A.M. (2020b). Short Communication: Pattern of Antibiotic Resistance on Extended-Spectrum Beta-Lactamases Genes Producing Escherichia coli on Laying Hens in Blitar, Indonesia. Biodiversitas, 21 (10): 4631-4635.
Wibisono, F.J., Sumiarto, B., Untari, T., Effendi, M.H, Permatasari, D.A., and Witaningrum, A.M. 2021. Molecular Identification of CTX Gene of Extended Spectrum Beta-Lactamase (ESBL) Producing Escherichia coli on Layer Chicken in Blitar, Indonesia. The J Anim Plant Sci, 31 (4): 954-959.
Widhi, A.P.K and Saputra, I.N.Y. (2021). Residu Antibiotik serta Keberadaan Escherichia coli Penghasil ESBL pada Daging Ayam Broiler di Pasar Kota Purwokerto. Jurnal Kesehatan Lingkungan Indonesia, 20 (2): 137-142.
Widodo, A., Effendi, M.H., and Khairullah, A.R. (2020). Extended-Spectrum Beta-Lactamase (ESBL)-Producing Escherichia coli from Livestock. Sys Rev Pharm, 11 (7): 382-392.
Wongsuvan, G., Wuthiekanun, V., Hinjoy, S., Day, N.P., and Limmathurotsakul, D. (2018). Antibiotic Use in Poultry: A Survey of Eight Farms in Thailand. Bulletin of The World Health Organization, 96 (2): 94-100.
Woolhouse, M., Ward, M., van Bunnik, B., and Farrar, J. (2015). Antimicrobial Resistance in Humans, Livestock and The Wider Environment. Phil Trans R Soc B, 370: 1-7.
Samanta, I., Joardar, S. N., Das, P.K., Sar, T.K., Bandyopadhyay, S., Dutta, T.K., and Sarkar, U. (2014). Prevalence and Antibiotic Resistance Profiles of Salmonella Serotypes Isolated from Backyard Poultry Flocks in West Bengal, India. J Poult Res, 23: 536-545.
Santos, L. L., Moura, R.A., Agilar-Ramires, P., Castro, A.P., and Lincopan, N. (2013). Current status of Extended-Spectrum ?-laktamase (ESBL)-Producing Enterobacteriaceae in Animals. FORMATEX, 3: 1600-1607.
Singer, A.C., Shaw, H., Rhodes, V., and Hart, A. (2016). Review of Antimicrobial Resistance in The Environment and Its Relevance to Environmental Regulators. Front Microbiol, 7: 1728.
Spellberg, B, Barlett, J.G., and Gilbert, D. N. (2013). The Future of Antibiotics and Resistance. N Engl J Med, 368: 299-302.
Tansawai, U., Walsh, T.R., and Niumsup, P.R. (2019). Extended Spectrum ?-Lactamase-Producing Escherichia coli among Backyard Poultry Farms, Farmers, and Environments in Thailand. Poultry Science, 98: 2622-2631.
Xu, J., Xu, Y., Wang, H., Guo, C., Qiu, H., He, Y., Zhang, Y., Li, X., and Meng, W. (2015). Occurrence of Antibiotics and Antibiotic Resistance Genes in A Sewage Treatment Plant and Its E?uent-Receiving River. Chemosphere, 119: 1379-1385.
Yanestria, S.M., Rahmaniar, R.P, Wibisono, F.J., and Effendi, M.H. (2019). Detection of invA gene of Salmonella from Milkfish (Chanos chanos) at Sidoarjo Wet Fish Market, Indonesia, Using Polymerase Chain Reaction Technique. Vet.World, 12 (1): 170-175.
Zhang, X.X. and Zhang, T. (2011). Occurrence, Abundance, and Diversity of Tetracycline Resistance Genes in 15 Sewage Treatment Plants Across China and Other Global Locations. Environ Sci Technol, 45: 2598-2604.

Most read articles by the same author(s)

1 2 3 > >>