Application of selection index for rice mutant screening under a drought stress condition imposed at reproductive growth phase

##plugins.themes.bootstrap3.article.main##

MAMIK SARWENDAH
ISKANDAR LUBIS
AHMAD JUNAEDI
BAMBANG SAPTA PURWOKO
DIDY SOPANDIE
AZRI KUSUMA DEWI

Abstract

Abstract. Sarwendah M, Lubis I, Junaedi A, Purwoko BS, Sopandie D, Dewi AK. 2022. Application of selection index for rice mutant screening under a drought stress condition imposed at reproductive growth phase. Biodiversitas 23: 5446-5452. Drought is a condition of limited availability of water that can reduce rice growth and productivity, and may threaten food security. Therefore, efforts are needed to produce drought-tolerant rice genotypes. This study aimed to select drought tolerant of the M3 mutant upland rice population at the reproductive growth phase. This research was carried out in dryland at BATAN, Indonesia, from September 2020 to February 2021, using an augmented design. The study employed 360 ??genotypes of mutant upland rice and 5 check varieties, namely Salumpikit, IR20, IR64, Limboto, and Situgintung. The selection index was constructed based on multivariate analyses such as correlation, path, and Principal Component Analysis (PCA). The coefficient of the selected main component can be used as a selection index. Before selecting the character values of each genotype, the values were standardized to obtain the same degree of value. The results showed that grain weight per hill (W.G.), panicle density (P.D.), panicle length (P.L.), and the number of filled grains per panicle (NFG) could be used as selection criteria for mutant upland rice tolerant to drought at reproductive growth phase. The selection index formula was I = (5*0.44*WG) + (2*0.41*PD) + (0.23*PL) + (0.42*NFG). Selection of genotypes of mutant upland rice based on weighted index selection resulted in 89 genotypes with high yields and good agronomic characteristics so that they could be tested in further research.

##plugins.themes.bootstrap3.article.details##

References
Acquaah G. 2012. Principles of Plant Genetics and Breeding. Second Edition. Experimental Agriculture. 2nd ed. Wiley/Blackwell, Chicheste. DOI: 10.1017/s0014479712001433.
Akbar MR, Purwoko BS, Dewi IS, Suwarno WB, and Sugiyanta. 2018. Agronomic and drought tolerance evaluation of doubled haploid rice breeding lines derived from anther culture. Sabrao J Breed Genet 50 (2): 115-128.
Alsabah R, Purwoko BS, Dewi IS, Wahyu Y. 2019. Selection index for selecting promising doubled haploid lines of black rice. Sabrao J Breed Genet 51 (4): 430-441.
Anshori MF, Purwoko BS, Dewi IS, Ardie SW, Suwarno WB, Safitri H. 2018. Determination of selection criteria for screening of rice genotypes for salinity tolerance. Sabrao J Breed Genet 50 (3): 279-294.
Anshori MF, Purwoko BS, Dewi IS, Ardie SW, Suwarno WB. 2019. Selection index based on multivariate analysis for selecting doubled-haploid rice lines in lowland saline prone area. Sabrao J Breed Genet 51 (2): 161-174.
Anshori MF, Purwoko BS, Dewi IS, Ardie SW, Suwarno WB. 2021. A new approach to select doubled haploid rice lines under salinity stress using indirect selection index. Rice Sci 28 (4): 368-378. DOI: 10.1016/j.rsci.2021.05.007.
Blum, A. 2017. Plant Breeding for Water-Limited Environments. Springer Science+Business Media, Berlin/Heidelberg, Germany. DOI: 10.1007/978-1-4419-7491-4.
Cruz CD. 2013. GENES - a software package for analysis in experimental statistics and quantitative genetics. Acta Scientiarum - Agron 35 (3): 271-276. DOI: 10.4025/actasciagron.v35i3.21251.
Darmadi D, Junaedi A, Sopandie D, Supijatno, Lubis I, Homma K. 2021. Water-efficient rice performances under drought stress conditions. AIMS Agric Food 6 (3): 838-863. DOI: 10.3934/agrfood.2021051.
Falconer DS, and Mackay TFC. 1996. Introduction to Quantitative Genetics. In Genetics, 4th ed. Longman, Essex. DOI: 10.1093/genetics/167.4.1529.
Farid M, Anshori MF, Musa Y, Iswoyo H, Sakinah IA. 2021. Interaction of rice salinity screening in germination and seedling phase through selection index based on principal components. Chil J Agric Res 81 (3): 368-377. DOI: 10.4067/s0718-58392021000300368.
Gang-Shun RAO, Ashraf U, Kong L, Zhao-wen MO, Xiao L, Zhong K. 2018. Low soil temperature and drought conditions at flowering stage affect physiology and pollen traits of rice. J Integr Agric 17 (0): 1859-1870. DOI: 10.1016/S2095-3119(18)62067-2.
Hallajian M. 2014. Integration of mutation and conventional breeding approaches to develop new superior drought-tolerant plants in rice (Oryza sativa). Ann Res Rev Biol 4 (7): 1173-1186. DOI: 10.9734/arrb/2014/5935.
Heinemann AB, Ramirez-Villegas J, Rebolledo MC, Neto GMFC, Castro AP. 2019. Upland rice breeding led to increased drought sensitivity in Brazil. Field Crops Res 231: 57-67. DOI: 10.1016/j.fcr.2018.11.009.
Huang M, Xu YH, Wang HQ. 2019. Field identification of morphological and physiological traits in two special mutants with strong tolerance and high sensitivity to drought stress in upland rice (Oryza sativa L.). J Integr Agric 18 (5): 970-981. DOI: 10.1016/S2095-3119(18)61909-4.
Jambormias E, Sutjahjo SH, Mattjik AA, Wahyu Y, Wirnas D. 2013. Modifikasi rancangan bersekat dan pendugaan parameter genetik pada generasi awal tanaman menyerbuk sendiri. Jurnal Budidaya Pertanian 9 (2): 52-59. 9 (2): 52-59. DOI: 10.29244/agrob.2.1.115-124. [Indonesian]
Kumar A. 2011. Breeding rice for drought tolerance and adaptation to climate change. Rice Knowl Manag Portal 1-29.
Kumar U, Laza MR, Soulié JC, Pasco R, Mendez KVS, Dingkuhn M. 2017. Analysis and simulation of phenotypic plasticity for traits contributing to yield potential in twelve rice genotypes. Field Crops Res 202: 94-107. DOI: 10.1016/j.fcr.2016.04.037.
Leng G, Hall J. 2019. Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future. Sci Total Environ 654: 811-821. DOI: 10.1016/j.scitotenv.2018.10.434.
Li F, Shimizu A, Nishio T, Tsutsumi N, Kato H. 2019. Comparison and characterization of mutations induced by gamma-ray and carbon-ion irradiation in rice (Oryza sativa L.) using whole-genome resequencing. Genes Genomes Genet 9 (11): 3743-3751. DOI: 10.1534/g3.119.400555.
Mau YS, NdiwaASS, Oematan SS, Markus JER. 2019. Drought tolerance indices for selection of drought tolerant, high yielding upland rice genotypes. Aust J Crop Sci 13 (1): 170-178. DOI: 10.21475/ajcs.19.13.01.p1778.
Moonmoon S, Islam MD. 2017. Effect of drought stress at different growth stages on yield and yield components of six rice (Oryza sativa L.) genotypes. Fundam Appl Agric 2 (3): 1. DOI: 10.5455/faa.277118.
Mustikarini ED, Ardiarini NR, Basuki N, Kuswanto. 2016. The improvement of early maturity red rice mutant trait for drought tolerance. Intl J Plant Biol 7: 48-52. DOI: 10.4081/pb.2016.6345.
Mustikarini ED, Lestari T, Santi R, Prayoga GI, Cahya Z. 2022. Short Communication: Evaluation of F6 generation of upland rice promising lines for drought stress tolerance. Biodiversitas 23: 3401-3406. DOI: 10.13057/biodiv/d230712.
Oladosu Y, Rafii MY, Abdullah N, Hussin G, Ramli A, Rahim HA, Miah G, Usman M. 2016. Principle and application of plant mutagenesis in crop improvement: A review. Biotechnol Biotechnol Equip 30 (1): 1-16. DOI: 10.1080/13102818.2015.1087333.
Pandey S, Bhandari H. 2009. Drought: Economic costs and research implications. Drought Front in Rice 3-17. DOI: 10.1142/9789814280013_0001.
Pandey V, Shukla A. 2015. Acclimation and tolerance strategies of rice under drought stress. Rice Sci 22 (4): 147-161. DOI: 10.1016/j.rsci.2015.04.001.
Prakash, Jeetendra, Bahadur D, Acharya S. 2022. Managing drought risks with drought-stress tolerant rice varieties and its impacts on yield and production risk?: A case of Nepal. Environ Challenges 7: 100503. DOI: 10.1016/j.envc.2022.100503.
Purwanto E, Nandariyah, Yuwono SS, Yunindanova MB. 2019. Induced mutation for genetic improvement in black rice using gamma-ray. Agrivita 41 (2): 213-220. DOI: 10.17503/agrivita.v41i2.876.
Sabouri A, Dadras AR, Azari M, Kouchesfahani AS, Taslimi M, Jalalifar R. 2022. Screening of rice drought?tolerant lines by introducing a new composite selection index and competitive with multivariate methods. Nat Portofolio 12: 2163. DOI: 10.1038/s41598-022-06123-9.
Saikumar S, Varma CMK, Saiharini A, Kalmeshwer AG, Nagendra K, Lavanya K, Ayyappa D. 2016. Grain yield responses to varied level of moisture stress at reproductive stage in an interspecific population derived from Swarna/O. glaberrima introgression line. Wageningen J Life Sci 78: 111-122. DOI: 10.1016/j.njas.2016.05.005.
Sakai T, Duque MC, Cabrera FAV, Martinez CP, Ishitani M. 2010. Establishment of drought screening protocols for rice under field conditions. Acta Agronómica 59 (3): 338-346.
Shaibu AA, Uguru MI, Sow, Maji MAT, Ndjiondjop MN, Venuprasad R. 2018. Screening African rice (Oryza glaberrima) for tolerance to abiotic stresses: ii. lowland drought. Crop Sci 58 (1): 133-142. DOI: 10.2135/cropsci2017.04.0255.
Sharma L, Dalal M, Verma RK, Kumar SVV, Yadav SK, Pushkar S, Kushwaha SR, Bhowmik A, Chinnusamy V. 2018. Auxin protects spikelet fertility and grain yield under drought and heat stresses in rice. Environ Exp Bot 150: 9-24. DOI: 10.1016/j.envexpbot.2018.02.013.
Shereen A, Chacher A, Arif M, Mumtaz S, Shirazi MU, Khan MA. 2017. Water deficit induced physiological and yield responses in Oryza sativa L. Pak J Bot 49: 1-6.
Wening RH, Rumanti IA, Samaullah Y. 2018. Indeks seleksi galur padi rawa dengan pembobot daya hasil tinggi dan tahan penyakit hawar daun bakteri. Penelitian Pertanian Tanaman Pangan 2 (2): 67-75. DOI: 10.21082/jpptp.v2n2.2018.p67-75. [Indonesian]
Zhang J, Zhang S, Cheng M, Jiang H, Zhang X, Peng C, Lu X, Zhang M, Jin J. 2018. Effect of drought on agronomic traits of rice and wheat: A meta-analysis. Intl J Environ Res Public Health 15 (5): 839. DOI: 10.3390/ijerph15050839.
Zulfqar M, Siddique S, Sehar U, Mustafa HSBM, Hasan E, Sadaqat HA. 2016. Effects of climate change on field crops in the scenario of food security. Nat Sci 14 (7): 17-33. DOI: 10.7537/marsnsj14071604.

Most read articles by the same author(s)

1 2 > >>