Antibacterial activity of Sunda porcupine quill extract (Hystrix javanica) against Staphylococcus aureus

##plugins.themes.bootstrap3.article.main##

MUHAMMAD DIRGA GIFARDI
LINA NOVIYANTI SUTARDI
WARTIKA ROSA FARIDA
ANDHIKA YUDHA PRAWIRA
SRIHADI AGUNGPRIYONO

Abstract

Abstract. Gifardi MD, Sutardi LN, Farida WR, Prawira AY, Agungpriyono S. 2022. Antibacterial activity of Sunda porcupine quill extract (Hystrix javanica) against Staphylococcus aureus. Biodiversitas 23: 4355-4360. The Sunda porcupine (Hystrix Javanica) is a rare mammal with quill-like hair covering its body. Because the Sunda porcupine has extensive sebaceous glands, the neutral carbohydrate content is well-distributed and is known to have excellent wound healing. In addition, the high acid content of porcupine quills is believed to influence wound healing by inhibiting the growth of bacteria that cause infection on the skin. This study aims to demonstrate the antibacterial activity of the Sunda porcupine quill extract, determine the antibacterial ability of the Sunda porcupine quill extract, and examine the influence of concentration variations on the growth inhibition of Staphylococcus aureus bacteria. Well-diffusion testing of the antibacterial activity of the Sunda porcupine quill extract (so that it is well-diffusion). The test findings demonstrated that the Sunda porcupine quill extract possessed antibacterial properties. The antibacterial activity of porcupine quill extract was indicated by the diameter of the clear zone (inhibition zone) based on the variation of the extract concentration used, namely 100%, 50%, 25%, 12.5%, 6.25%, 3.125%, 1.5625%. The antibacterial activity of the Sunda porcupine quill extract was seen at concentrations of 100%, 50%, and 25%, with the average diameter of the clear zone being 14.88 mm ± 2.43; 12.24 mm ± 2.59; and 12.74 mm ± 3.69. The test results showed an effect of variations in the concentration of Sunda porcupine quill extract on the diameter of the clear zone (P??=0.05) based on the one-way ANOVA test. Sunda porcupine quill extract with concentrations of 100%, 50%, and 25% is included in the category of strong antibacterial so that it can be used as an antibacterial agent.

##plugins.themes.bootstrap3.article.details##

References
Akerina FO, Nurhayati T, Suwandy R. 2015. Isolation and characterization of antibacterial compounds from sea urchin. JPHPI. 18(1).
Almoudi MM, Hussein AS, Hassan MIA, Zain NM. 2018. A systematic review on antibacterial activity of zinc against Streptococcus mutans. Saudi Dent J. 30:283–291.
Badaring DR, Sari PMS, Nurhabiba S, Wulan W, Sintiya ARL. 2020. Uji ekstrak daun maja (Aegle marmelos L.) terhadap pertumbuhan bakteri Escherichia coli dan Staphylococcus aureus. Indones J Fundam Sci. 6(1):16–26.
Balouiri M, Sadiki M, Ibnsouda SK. 2016. Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal. 6:71–79.
Davis WW, Scout TR. 1971. Disc plate method of microbiological antibiotic assay. Appl Microbiol. 22(4):659–665.
[Depkes RI] Departemen Kesehatan Republik Indonesia. 2000. Parameter Standar Umum Ekstrak Tumbuhan Obat Cetakan Pertama. Jakarta: Depkes RI.
Desbois AP, Smith VJ. 2010. Antibacterial free fatty acids: Activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol. 85(6):1629–1642.
Escorsim AM, da Rocha G, Vargas JVC, Mariano AB, Ramos LP, Corazza ML, Cordeiro CS. 2018. Extraction of acutodesmus obliquus lipids using a mixture of ethanol and hexane as solvent. Biomass and Bioenergy. 108:470–478.
Hau EER, Rohyati E. 2017. antibacterial activity of fermented nira lontar with variation of fermentation time against Staphylococcus aureus and Escherichia coli. J Kaji Vet. 5(2):91–98.
Hovorková P, Lalou?ková K, Sk?ivanová E. 2018. Determination of in vitro antibacterial activity of plant oils containing medium-chain fatty acids against gram-positive pathogenic and gut commensal bacteria. Czech J Anim Sci. 63(3):119–125.
Idris AA, Nour AH, Ali MM, Erwa IY, Ishag OAO. 2020. Physicochemical properties and fatty acids composition of sudanese baobab (Adansonia Digitata L.) seed oil. Int J Pharma Bio Sci. 11(1):34–42.
Inayah N, Farida WR, Purwaningsih E. 2020. Microstructure of quills in sunda porcupine Hystrix javanica (F. Cuvier, 1823). J Biol Indones. 16(1):81–88.
Inguglia L, Chiaramonte M, Stefano V Di, Schillaci D, Cammilleri G, Pantano L, Mauro M, Vazzana M, Ferrantelli V, Nicolosi R, et al. 2020. Salmo salar fish waste oil: Fatty acids composition and antibacterial activity. Peer J. 8.
Jawetz K, Melnick J, Adelberg E. 1996. Mikrobiologi Kedokteran, Edi Nugroho dan R.F. Maulan. (alih bahasa). Jakarta: Buku Kedokteran EGC.
Keating A. 2018. Quirks and quills, understanding porcupines. Wildl J.:13–17.
[Kemenkes RI] Kementerian Kesehatan Republik Indonesia. 2017. Farmakope Herbal Indonesia. II. Jakarta: Kementerian Kesehatan Republik Indonesia.
MacDonald DW. 2006. The Encyclopedia of Mammals 2nd Edition. UK: Oxford University Press.
Mena TP, Sutrisno, Marfu’ah S. 2020. Antibacterial activity of free fatty acids, potassium soap, and fatty acids methyl esters from VCO (virgin coconut oil). IOP Conf Ser Mater Sci Eng. 833(1).
Mercer P, Armenta RE. 2011. Developments in oil extraction from microalgae. Eur J Lipid Sci Technol. 113(5):539–547.
Mukhriani. 2014. Ekstraksi, Pemisahan Senyawa, dan Identifikasi Senyawa Aktif. J Kesehat. 7(2):361–367.
Mustikasari IA, Withaningsi S, Megantara EN, Husodo T, Parikesit. 2019. Population and distribution of Sunda porcupine (Hystrix javanica F. Cuvier, 1823) in designated area of Cisokan Hydropower, West Java, Indonesia. Biodiversitas. 20(3):762–769.
Nguyen VTA, Le TD, Phan HN, Tran LB. 2017. Antibacterial activity of free fatty acids from hydrolyzed virgin coconut oil using lipase from Candida rugosa. J Lipids. 2017.
Olson R, Lewis AM. 1999. Porcupine ecology and damage management techniques for rural homeowners. University of Wyoming:1–16.
Peacock SJ, de Silva I, Lowy FD. 2001. What determines nasal carriage of Staphylococcus aureus?. Trends Microbiol. 9(12):605–610.
Pratiwi ST. 2008. Mikrobiologi Farmasi. Yogyakarta: Erlangga.
Prawira AY. 2019. Morphological Characteristic of the Skin of Sunda Porcupine (Hystrix javanica): Morphophysiology of Wound Healing.[Dissertation]. IPB University, Bogor. [Indonesian]
Prawira AY, Novelina S, Darusman HS, Farida WR, Agungpriyono S. 2018. The dorsal skin structure contributes to the surface bacteria populations of Sunda porcupine (Hystrix javanica). Anat Histol Embryol. 47:591–598.
Prawira AY, Novelina S, Darusman HS, Farida WR, Agungpriyono S. 2019. Lectin histochemical study of the quill sebaceous gland in the dorsal skin of the Sunda porcupine. Biodiversitas. 20(9):1677–1684.
Roze U, Locke DC, Vatakis N. 1990. Antibiotic properties of porcupine quills. J Chem Ecol. 16(3):725–734.
Simplice MR, Macaire WH, Hervé NNF, Fabrice TD, Justin DD, François T, Jules-Roger K. 2018. Chemical composition and antibacterial activity of oils from Chrysicthys nigrodigitatus and Hepsetus odoe, two freshwater fishes from Yabassi, Cameroon. Lipids Health Dis. 17(1):1–7.
Soetjipto H, Anggreini T, Cahyanti MN. 2018. Fatty acid profile and characterization of pumpkin seed oil (Cucurbita moschata D.). J Kim dan Kemasan. 40(2):79–86.
Steel RGD, Torrie JH. 1993. Prinsip dan Prosedur Statistika: Suatu Pendekatan Biometrik. Jakarta: PT Gramedia Pustaka Utama.
Utomo SB, Fujiyanti M, Lestari WP, Mulyani S. 2018. Antibacterial activity test of the c-4-methoxyphenylcalix[4]resorcinarene compound modified by hexadecyltrimethylammonium-bromide against Staphylococcus aureus and Escherichia coli bacteria. JKPK (Jurnal Kim dan Pendidik Kim. 3(3):201.
Yoon BK, Jackman JA, Valle-González ER, Cho N-J. 2018. Antibacterial free fatty acids and monoglycerides: biological activities, experimental testing, and therapeutic applications. Int J Mol Sci. 19(1114):1–40.
Zhang QW, Lin LG, Ye WC. 2018. Techniques for extraction and isolation of natural products: a comprehensive review. Chin Med. 13(20):1–26.

Most read articles by the same author(s)

1 2 > >>