Expression of SIX1b and SIX1c effector genes and banana resistance genes during Foc TR4 infection on banana cultivars

##plugins.themes.bootstrap3.article.main##

AZIZAH RIDHA ULILALBAB
SRI WIDINUGRAHENI
MASANTO
SITI SUBANDIYAH
ARIF WIBOWO

Abstract

Abstract. Ulilalbab AR, Widinugraheni S, Masanto, Subandiyah S, Wibowo A. 2022. Expression of SIX1b and SIX1c effector genes and banana resistance genes during Foc TR4 infection on banana cultivars. Biodiversitas 23: 5314-5322. The relative expression SIX1 genes isolates of Foc TR4 and banana resistance genes have not been intensively studied. This study aimed to determine the expression of SIX1 genes of Foc TR4 and banana resistance genes. Twelve Foc TR4 isolates were collected from several regions in Indonesia. DSI analysis was performed to categorize their virulence levels. The representative Foc TR4 isolates from different virulence levels were artificially inoculated on the Musa acuminata Colla Cavendish subgroup and cv. Barangan and incubated for 48, 72, and 96 HPI. The expressed genes were quantitatively analyzed using the qPCR technique using primers to amplify SIX1b, SIX1c, chitinase, and PR-protein 1 genes. The results categorized the virulence of Foc TR4 isolates into moderate, virulent, and high virulent. The isolates of KJG and Batu-4 were selected for gene expression study representing moderate and high virulent groups, respectively. The results of in planta assay found that the expression of SIX1bSIX1c, chitinase, and PR-protein1 was upregulated on the inoculated plants during the incubation period. However, the expression of these genes was increasingly upregulated in both bananas at early-stage inoculation. We assumed that plant defense genes of bananas might actively encounter the common virulence mechanisms of Foc TR4 at the initial stage of inoculation.

##plugins.themes.bootstrap3.article.details##

References
Ahmad S, Wong CKF, Vadamalai G, Wahab MA, Saidi NB, Zulperi D. 2020. Molecular characterization of Fusarium oxysporum f.sp cubense tropical race 4 (Foc-TR4) isolates from Malaysia banana using secreted in xylem (SIX) effector genes. Arch Phytopathol Plant Prot 53 (1): 1-17. DOI: 10.1080/03235408.2020.1761766.
Ali S, Ganaib BA, Kamilib AN, Bhatc AA, Mira ZA, Bhatd JA, Tyagia A, Islame ST, Mushtaqd M, Yadava P, Rawata S, Grovera A. 2018. Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiol Res 212-213: 29-37. DOI: 10.1016/j.micres.2018.04.008.
Aoki T, O’Donnell K, Geiser DM. 2014. Systematics of key phytopathogenic Fusarium species: Current status and future challenges. J Gen Plant Pathol 80: 189-201. DOI: 10.1007/s10327-014-0509-3.
Bhuvanendra HK, Udaya Shankar AC, Chandra NS, Ramachandra KK, Shetty HS, Prakash HS. 2010. Biochemical characterization of Fusarium oxysporum f.sp. cubense isolates from India. Afr J Biotechnol 9 (4): 523-530. DOI: 10.5897/AJB09.1069.
Carvalhais LC, Henderson J, Rincon-Florez VA, O’Dwyer C, Czislowski E, Aitken EAB, Drenth A. 2019. Molecular diagnostic of banana Fusarium wilt targeting secreted in xylem genes. Front Plant Sci 10: 1-17. DOI : 10.3389/fpls.2019.00547.
Dita MA, Vicente LP, Martinez E. 2014. Inoculation of Fusarium oxysporum f.sp cubense causal agent of Fusarium wilt in banana. Memorias de XV Reunion Internacional de ACORBAT (Oaxaca, MX).
Ellis ML, Lanubile A, Garcia C, Munkvold GP. 2016. Association of putative fungal effectors in Fusarium oxysporum wilt symptoms in soybean. Phytopathology 106 (7): 762-773. DOI: 10.1094/PHYTO-11-15-0293-R.
FAO. 2022. Food and Agriculture Statistical Databases (FAOSTAT). https://www.fao.org/faostat. accessed June 2022.
Gabrekiristos E, Yesuf M, Ayana G. 2022. An optimized inoculation method of Fusarium wilt (Fusarium oxysporum f.sp. cubense) causal agent of banana wilt disease in Ethiopia. Greener J Plant Breed Crop Sci 6 (2): 7-14. DOI: 10.15580/GJPBCS.2018.2.048918065.
Gawehns F, Ma L, Bruning O, Petra M. Houterman PM, Boeren S, Cornelissen BJC, Rep M, Takken FLW. 2015. The effector repertoire of Fusarium oxysporum determines the tomato xylem proteome composition following infection. Front Plant Sci 6: 1-17. DOI: 10.3389/fpls.2015.00967.
Groenewald S. 2005. Biology, Pathogenecity, and Diversity of Fusarium oxysporum f.sp. cubense. [Dissertation]. University of Pretoria, South Africa.
Guo L, Han L, Yang L, Zeng H, Fan D, Zhu, F, Feng Y, Wang G, Peng C, Jiang X, Zhou D, Ni P, Liang C, Liu L, Wang J, Mao C, Fang X, Peng M, Huang J. 2014. Genome and transcriptome analysis of the fungal pathogen Fusarium oxysporum f.sp. cubense causing banana vascular wilt disease. PLoS ONE 9: 1-17. DOI: 10.1371/journal.pone.0095543.
Jayatri HN, Sumardiyono C, Wibowo A. 2018. Race and virulence determination of Fusarium oxysporum f.sp cubense isolates from Sidomulyo Village of Bantul, Yogyakarta. Jurnal Perlindungan Tanaman Indonesia 22: 72-81. DOI: 10.22146/jpti.26283. [Indonesian]
Kiswanti D, Suryanti, Sumardiyono C. 2010. Identification and virulence of Fusarium oxysporum f.sp cubense race 4. Jurnal Perlindungan Tanaman Indonesia 16 (1): 28-32. [Indonesian]
Li W, Ge X, Wu W, Wang W, Hu Y, Mo Y, Sun D, Shi S, Xie J. 2015. Identification of defense-related GENEs in banana roots infected by Fusarium oxysporum f.sp. cubense tropical race 4. Euphytica 205: 837-849. DOI : 10.1007/s10681-015-1418-z.
Liu S, Li J, Zhang Y, Liu N, Viljoen A, Mostert D, Zuo C, Hu C, Bi F, Gao H, Sheng O, Deng G, Yang Q, Dong T, Dou T, Yi G, Ma LJ, Li C. 2020. Fusaric acid instigates the invasion of banana by Fusarium oxysporum f. sp. cubense TR4. New Phytol 225 (2): 913-929. DOI: 10.1111/nph.16193.
Magdama F, Maggi LM, Serrano L, Sosa D, Geiser DM, Jiménez-Gasco MM. 2019. Comparative analysis uncovers the limitations of current molecular detection methods for Fusarium oxysporum f.sp. cubense race 4 strains. PLoS ONE 14 (9): 1-17. DOI:10.1371/journal.pone.0222727.
Maldonado BLD, Villarruel OJL, Calderón OMA, Sánchez EAC. 2018. Secreted in xylem (six) genes in Fusarium oxysporum f.sp. cubense and their potential acquisition by horizontal transfer. Adv Biotech Micro 10 (1): 11-18. DOI: 10.19080/AIBM.2018.09.555775.
Malik A, Preety. 2019. Purification and properties of plant chitinases: A review. J Food Biochem 43: 1-11. DOI: 10.1111/jfbc.12762.
Metsalu T, Vilo J. 2015. ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res 43: W566-W570. DOI: 10.1093/nar/gkv468.
Poon NK, Teo CH, Othman RY. 2019. Differential gene expression analysis of Secreted in Xylem (SIX) genes from Fusarium oxysporum f.sp. cubense tropical race 4 in Musa acuminata cv. Berangan and potential application for early detection of infection. J Gen Plant Pathol 86: 13-23. DOI: 10.1007/s10327-019-00882-6.
Pratama Y, Wibowo A, Widiastuti A, Subandiyah S, Widinugraheni S, Rep M. 2018. Evaluation of some specific primer sets development for detecting Fusarium oxysporum f.sp. cubense Tropic Race 4 (Foc TR4) originating from Indonesia. Jurnal Perlindungan Tanaman Indonesia 22 (2): 82-90. DOI: 10.22146/jpti.25037. [Indonesian]
Rep M, van der Does HC, Meijer M, van Wijk R, Houterman PM, Dekker HL, de Koster CG, Cornelissen BJ. 2004. A small, cysteine-rich protein secreted by Fusarium oxysporum during colonization of xylem vessels is required for I-3-mediated resistance in tomato. Mol Microbiol 53 (5): 1373-1383. DOI: 10.1111/j.1365-2958.2004.04177.x.
Rocha AJ, Soares JMDS, Nascimento FDS, Rocha ADS, Amorim VBO, Ramos APS, Ferreira CF, Haddad F, Amorim EP. 2022. Molecular, histological and histochemical responses of banana cultivars challenged with Fusarium oxysporum f.sp. cubense with different levels of virulence. Plants 11: 1-23. DOI: 10.3390/plants11182339.
Subramaniam S, Maziah M, Sariah M, Puad MP, Xavier R. 2006. Bioassay method for testing Fusarium wilt disease tolerance in transgenic banana. Sci Hortic 108: 378-389. DOI: 10.1016/j.scienta.2006.02.028.
Sutherland R, Viljoen A, Myburg AA, Van den Berg N. 2013. Pathogenecity associated genes in Fusarium oxysporum f.sp cubense race 4. S Afr J Sci 109: 1-9. DOI: 10.1590/sajs.2013/20120023.
Swarupa V, Ravishankar KV, Rekha A. 2014. Plant defense response against Fusarium oxysporum and strategies to develop tolerant genotypes in banana. Planta 239: 735-751. DOI: 10.1007/s00425-013-2024-8.
Vaghela B, Vashi R, Rajput K, Joshi R. 2022. Plant chitinases and their role in plant defense: A comprehensive review. Enzyme Microb Technol 159: 110055. DOI: 10.1016/j.enzmictec.2022.110055.
van der Does HC, Duyvesteijn RG, Goltstein PM, van Schie CC, Manders EM, Cornelissen BJ, Rep M.. 2008. Expression of effector gene SIX1 of Fusarium oxysporum requires living plant cells. Fungal Genet Biol 45 (9): 1257-1264. DOI: 10.1016/j.fgb.2008.06.002.
Wang D, Peng C, Zheng X, Chang L, Xu B, Tong Z. 2020. Secretome analysis of the banana Fusarium wilt fungi Foc R1 and Foc TR4 reveals a new effector OASTL required for full pathogenicity of Foc TR4 in banana. Biomolecules 10: 1-17. DOI: 10.3390/biom10101430.
Wibowo A, Subandiyah S, Sumardiyono C, Sulistyowati L, Taylor P, Fegan M. 2011. Occurence of Tropical Race 4 Fusarium oxysporum f.sp. cubense in Indonesia. Plant Pathol J 27: 280-284. DOI: 10.5423/PPJ.2011.27.3.280.
Widinugraheni S, Niño-Sánchez J, van der Does HC, van Dam P, García-Bastidas FA, Subandiyah S, Meijer HJG, Kistler HC, Kema GHJ, Rep M. 2018. A SIX1 homolog in Fusarium oxysporum f.sp. cubense tropical race 4 contributes to virulence towards Cavendish banana. PLoS ONE 13 (10): e0205896. DOI: 10.1371/journal.pone.0205896.
Yanti Y, Warnita, Reflin, Busniah M. 2018. Indigenous endophyte bacteria ability to control Ralstonia and Fusarium wilt disease on chili pepper. Biodiversitas 19: 1532-1538. DOI: 10.13057/biodiv/d190446.
Zhang L. Cenci A. Rouard M, Zhang D, Wang Y, Tang W, Zheng S.J. 2019. Transcriptomic analysis of resistant and susceptible banana corms in response to infection by Fusarium oxysporum f.sp. cubense tropical race 4. Sci Rep 9: 1-14. DOI: 10.1038/s41598-019-44637-x.

Most read articles by the same author(s)

1 2 > >>