Evaluation of the effect of various nutritional and environmental factors on biosurfactant production by Staphylococcus epidermidis




Abstract. Alyousif NA, Al-Tamimi WH, Al-sahib MAA. 2022. Evaluation of the effect of various nutritional and environmental factors on biosurfactant production by Staphylococcus epidermidis. Biodiversitas 23: 3533-3538. Biosurfactants are biological surface-active compounds synthesized mainly by hydrocarbon-utilizing bacteria. The properties of biosurfactants make them promising compounds for the application in various fields. The current study evaluated the effect of various nutritional and environmental factors on biosurfactants produced by Staphylococcus epidermidis. This bacterium, for first time in world was isolated from oilfield reservoir in the current study and identified by 16S rDNA sequencing and considered biosurfactant producer according to screening tests. Several factors were evaluated in the current study to assess the optimal conditions for producing the biosurfactant. The results demonstrated that the best carbon source was olive oil with 2% concentration and glutamic acid was the best nitrogen source with 0.2% concentration. The study demonstrated that the best biosurfactant production was recorded at incubation time of 5 days with a 3% inoculum size. Further study is required to determine the chemical structure of produced biosurfactants and to evaluate the potential application of biosurfactants in various fields, therefore constituting a stimulus for future studies.


Alyousif, N. A., Al-Luaibi, Y. Y. Y. and Hussein, W. (2020). Distribution and molecular characterization of biosurfactant-producing bacteria. Biodiv. 21: 4034-4040. DOI: 10.13057/biodiv/d210914.
Alyousif, N. A., Al-Tamimi, W. H. and Al-Luaibi, Y. Y. Y. (2020). Screening, enhance production and characterization of biosurfactant produced by Pseudomonas aeruginosa isolated from hydrocarbon contaminated soil. Eurasia J Biosci 14: 4377-4391.
Aparna, A., Srinikethan, G. and Hegde, S. (2012). Isolation, Screening and Production of Biosurfactant by Bacillus clausii 5B. Res Biotechnol, 3(2): 49-56.
Chandra, P., Enespa, Singh, R, Arora, P. K. (2020). Microbial lipases and their industrial applications: a comprehensive review. Microb Cell Factories, 19(1): 169. doi:10.1186/s12934-020-01428-8.
Deng, M. C., Li, J., Liang, F. R., Yi, M., Xu, X. M., Yuan, J. P., Peng, J., Wu, C. F. and Wang, J. H. (2014). Isolation and characterization of a novel hydrocarbon degrading bacterium Achromobacter sp. HZ01 from the crude oil contaminated seawater at the Daya Bay, Southern China. Mar Pollut Bull 83 (1): 79-86. DOI: 10.1016/j.marpolbul.2014.04.018.
Eddouaouda, K., Mnif, S., Badis, A., Younes, S. B., Cherif, S., Ferhat, S., Mhiri, N., Chamkha, M. and Sayadi, S. (2011). Characterization of a novel biosurfactant produced by Staphylococcus sp. strain 1E with potential application on hydrocarbon bioremediation. J. Basic Microbiol., 52(4), 408–418. doi:10.1002/jobm.201100268.
Elazzazy, A. M., Abdelmoneim, T. S. and Almaghrabi, O. A. (2015). Isolation and characterization of biosurfactant production under extreme environmental conditions by alkali-halo-thermophilic bacteria from Saudi Arabia. Saudi J Biol Sci 22 (4): 466-475. DOI:10.1016/j. sjbs.2014.11.01 8.
Fazli, R. R., Hertadi, R. (2018). Optimization of rhamnolipid production from bioconversion of palm oil mill effluent (POME) waste by Pseudomonas stutzeri BK-AB12 using response surface methodology. IOP Conf. Ser.: Earth Environ Sci, 209 012024. doi:10.1088/1755-1315/209/1/012024.
Hamed, S. B., Smii, L., Ghram, A. and Maaroufi, A. (2012). Screening of potential biosurfactant-producing bacteria isolated from seawater biofilm. Afr. J. Biotechnol., 11 (77): 14153-14158. DOI: 10.5897/A JB12.562.
Hu, X., Wang, C. and Wang, P. (2015). Optimization and characterization of biosurfactant production from marine Vibrio sp. strain 3B-2. Front Microbiol, 6:976. doi: 10.3389/fmicb.2015.00976.
Ibrahim, H. M. M. (2016). Characterization of biosurfactants produced by novel strains of Ochrobactrum anthropi HM-1 and Citrobacter freundii HM-2 from used engine oil-contaminated soil. Egypt J Petrol, S111006211630174X–. doi:10.1016/j.ejpe.2016.12.005.
Keskin, N. O. S., Han, D. Ozkan, A. D., Angun, P., Umu, O. C. O. and Tekinay, T. (2015). Production and structural characterization of biosurfactant produced by newly isolated Staphylococcus xylosus STF1 from petroleum contaminated soil. J Petroleum Sci Eng 133: 689–694. doi.org/10.1016/j.petrol.2015.07.011
Mani, P., Dineshkumar, G., Jayaseelan, T., Deepalakshmi, K., Ganesh Kumar, C. and Senthil Balan, S. (2016). Antimicrobial activities of a promising glycolipid biosurfactant from a novel marine Staphylococcus saprophyticus SBPS 15. 3 Biotech, 6(2). doi:10.1007/s13205-016-0478-7.
Miyoshi, T., Iwatsuki, T. and Naganuma T. (2005). Phylogenetic characterization of 16S rRNA gene clones from deep-groundwater microorganisms that pass through 0.2-micrometer pore-size filters. Appl. Environ. Microbiol., 71 (2): 1084-1088. DOI: 10.1128/AEM.71.2.1084-
Nair, N., Biswas, R., Gotz, F. and Biswas, L. (2014). Impact of Staphylococcus aureus on Pathogenesis in Polymicrobial Infections. Infect Immun, 82(6): 2162–2169. doi:10.1128/IAI.00059-14.
Nayarisseri, A., Singh, P. and Singh, S. K. (2018). Screening, isolation and characterization of biosurfactant producing Bacillus subtilis strain ANSKLAB03. Bioinformation, 14(6), 304 314. doi:10.6026/973206300 14304.
Ndlovu, T., Khan, S. and Khan, W. (2016). Distribution and diversity of biosurfactant-producing bacteria in a wastewater treatment plant.
Environ. Sci. Pollut. Res., 23 (10): 9993-10004. DOI: 10.1007/s11356-
Okoliegbe, I. N. and Agarry, O. O. (2012). Application of microbial surfactant (a review). Scholarly J Biotech 1(1):15-23.
Sachdev, D. P. and Cameotra, S. S. (2013). Biosurfactants in agriculture. Appl. Microbiol. Biotechnol., 97:1005–1016.
San Keskin, N. O., Han, D., Devrim Ozkan, A., Angun, P., Onarman Umu, O. C. and Tekinay, T. (2015). Production and structural characterization of biosurfactant produced by newly isolated staphylococcus xylosus STF1 from petroleum contaminated soil. J. Petroleum Sci. Engi., 133, 689–694. doi: 10.1016/j.petrol.2015.07.011
Santos, A. P. P., Silva, M. D. S., Costa, E. V. L., Rufino, R. D., Santos, V. A., Ramos, C. S., Sarubbo, L. A. and Porto, A. L. F. (2018). Production and characterization of a biosurfactant produced by Streptomyces sp. DPUA 1559 isolated from lichens of the Amazon region. Braz. J. Med. Biol. Res., 51 (2): e6657. DOI: 10.1590/1414-431X20176657.
Satpute, S. K., Banpurkar, A. G., Dhakephalkar, P. K., Banat, I. M. and Chopade, B. A. (2010). Methods for investigating biosurfactants and bioemulsifiers: A review. Crit Rev Biotechnol 30 (2): 127-144. DOI:
Sifour, M., Ouled-Haddar, H. and Aziz, G. M. (2005). Production of biosurfactants from two Bacillus species. Egypt J. Aquat. Res., 31: 142-148.
Sohail, R. and Jamil, N. (2020). Isolation of biosurfactant producing bacteria from Potwar oil fields: Effect of non-fossil fuel-based carbon sources. Green Process Synth., 9: 77-86. DOI: 10.1515/gps-2020-0009.
Tao, W., Lin, J., Wang, W., Huang, H. and Li, S. (2020). Biodegradation of aliphatic and polycyclic aromatic hydrocarbons by the thermophilic bioemulsifer-producing Aeribacillus pallidus strain SL-1. Ecotoxicol Environ Saf, 189, 109994.
Youssef, N., Elshahed, M. S. and McInerney, M. J. (2009). Microbial processes in oil fields: culprits, problems, and opportunities. Adv. Appl. Microbiol. 66, 141–251.