Enzyme production, antibacterial and antifungal activities of actinobacteria isolated from Ficus deltoidea rhizosphere

##plugins.themes.bootstrap3.article.main##

ISRA JANATININGRUM
YULIN LESTARI

Abstract

Abstract. Janatiningrum I, Lestari Y. 2022. Enzyme production, antibacterial and antifungal activities of actinobacteria isolated from Ficus deltoidea rhizosphere. Biodiversitas 23: 1950-1957. Actinobacteria have long been known to have the ability to produce bioactive compounds and secondary metabolites. Actinobacteria from the rhizosphere of Ficus deltoidea Jack were expected to produce beneficial secondary metabolite compounds with antibacterial, antifungal activity, and enzymes. A total of 34 different actinobacteria were isolated from F. deltoidea rhizosphere soil. They were assessed for their antimicrobial activity against four fungi, four bacteria, and enzymatic activity. The enzyme activity test showed that almost all isolates had amylase, protease, and cellulase activities. The results of antibacterial indicated that 61.8% of all isolates are active against bacterial tested, i.e., Bacillus subtilis ATTC 3061 (10), Staphylococcus aureus ATCC 6538 (13), and Escherichia coli ATCC 8739 (3). The antifungal test showed that 64.8% of the isolates had antifungal activity against four fungal tested, i.e., Fusarium oxysporum (13), Candida albicans (7), Colletotrichum capsici (17). Based on the enzymes production, antibacterial activity, and antifungal activity, RTB 1 and RTB 34 isolates were selected to be characterized by morphological and 16S rRNA gene identification. The morphological characterization and molecular identification showed that RTB 1 and RTB 34 belong to the Streptomyces genus. This study indicated that the selected actinomycetes could be antimicrobial and enzyme sources.

##plugins.themes.bootstrap3.article.details##

References
Aguiar MS, Maldonado RR, Carvalho AL, Oliveira EA. 2022. Methods in Actinobacteriology. New York: Springer. 495-503
Al-Agamy MH, Alhuzani MR, Kelany MS, Hamed MM. 2021. Production and partial characterization of ?-amylase enzyme from marine actinomycetes. BioMed Res Intern. 2021:1-15. https://doi.org/10.1155/2021/5289848
Amrita K, Nitin J, Devi CS. 2012. Novel bioactive compounds from mangrove dirived Actinomycetes. Intl Res J Pharm 3 (2): 25-29/
Anderson AS, Wellington EMH. 2001. The taxonomy of Streptomyces and related genera. Int J Syst Evol Microbiol 51:797–814. DOI: 10.1099/00207713-51-3-797
Arjit Das, Mahdi EB, Prashanthi K, Sandeep S, Sourav B. 2012. Enzymatic screening and random amplified polymorphic DNA finger printing of soil Streptomycetes isolated from Wayanad District in Kerala, India. J. Bio Sci. 12: 43-50. DOI: 10.3923/jbs.2012.43.50
Badri DV, Chaparro JM, Zhang R, Shen Q, Vivanco JM. 2013. Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. J. Biol. Chem. 288: 4502–4512. DOI: 10.1074/jbc.M112.433300
Berdy J. 2005. Bioactive microbial metabolites. J Antibiot. 58(1):1-26. DOI: 10.1038/ja.2005.1.
Bivi RN, Farhana MSN, Khairulmazmi A, Idris A. 2010. Control of Ganoderma boninense: a causal agent of basal stem rot disease in oil palm with endophyte bacteria In vitro. Int J Agric Biol 12 (6): 833-839. DOI: 10–371/STS/2010/12–6–833–839
Bruce KD, Hiorns WD, Hobman JL, Osborn AM, Strike P, Ritchie DA. 1992. Amplification of DNA from native populations of soil bacteria by using the polymerase chain reaction. Appl Environ Microb. DOI:58:3413-3416. DOI:10.1128/AEM.58.10.3413-3416.1992
Das P, Solanki R, Khanna M. 2014. Isolation and screening of cellulolytic actinomycetes from diverse habitats. IJBR. 5(3): 438-451. DOI:10.31695/IJASRE.2019.33420
Elleuch L, Shaaban M, Smaoui S, Mellouli L, Karray-Rebai I, Fourati Ben Fguira L, Shaaban K A, Laatsch H. 2010. Bioactive Secondary Metabolites from a New Terrestrial Streptomyces sp. TN262. Appl. Biochem. Biotechnol. 162: 579-593. DOI:10.1007/s12010-009-8808-4
Gow NAR, Van de Veerdonk FL, Brown AJP, Netea MG. 2012. Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nat Rev Microbiol. 10:112–122. DOI: 10.1038/nrmicro2711
Gowtham HG, Murali M, Singh SB, Lakshmeesha TR, Murthy KN, Amruthesh KN, Niranjana SR. 2018. Plant growth promoting rhizobacteria Bacillus amyloliquefaciens improves plant growth and induces resistance in chilli against anthracnose disease. Biol. Control. 126:209-217. DOI:10.1021/jf400038z
Hermann VE, Lecomte C. 2019. Current status of fusarium oxysporum formae speciales and races. Phytopathol. 109:512-530. DOI: 10.1094/PHYTO-08-18-0320-RVW
Hu H, Lin HP, Xie Q, Li L, Xie XQ, Sun M, Hong K. 2011. Streptomyces shenzhenensis sp. nov., a novel actinomycete isolated from mangrove sediment. Antonie van Leeuwenhoek 100:631–637. DOI:10.1007/s10482-011-9618-6
Janatiningrum I, Solihin DD, Meryandini A, Lestari Y. 2018. Comparative study on the diversity of endophytic actinobacteria communities from Ficus deltoidea using metagenomic and culture dependent approaches, Biodiversitas., 19, 1514-1520. DOI: 10.13057/biodiv/d190443
Kafilzadeh F, Dehdari F. 2015. Amylase activity of aquatic actinomycetes isolated from the sediments of mangrove forests in south of Iran. EJAR. 41: 197–201. DOI:10.1016/j.ejar.2015.04.003
Lamo FJ, Takken FLW. 2020. Biocontrol by Fusarium oxysporum using endophyte-mediated resistance. Front in Plants Sci. 11:37. DOI: 10.3389/fpls.2020.00037
Lee HJ, Whang KS. 2015. Streptomyces sasae sp. nov., isolated from bamboo (Sasa borealis) rhizosphere soil. IJSEM. 65: 3547–3551. DOI: 10.1099/ijsem.0.000454
Martina K, Jan K, Tamas F, Ladislav C, Marek O, Genevieve LG, et al. 2008. Development of a 16S rRNA gene-based prototype microarray for the detection of selected actinomycetes genera. Antonie Van Leeuwenhoek 2008;94:439-453. DOI: 10.1111/j.1462-2920.2005.00895.x.
Mahyarudin RI, Rusmana I, Lestari Y. 2015. Metagenomic of actinomycetes based on 16S rRNA and nifH genes in soil and roots of four Indonesian rice cultivars using PCR-DGGE. HAYATI J Biosci 22:113-21. DOI:10.3389/fmicb.2019.02103
Hutchings M, Truman AW, Wilkinson B. 2019. Antibiotics: past, present and future. Curr Opinion Microbiol. 51:72-80. DOI:10.1016/j.mib.2019.10.008
Suthindhiran K, Jayasri MA, Dipali D, Prasar A. 2013. Screening and characterization of protease producing actinomycetes from marine saltern. J. Basic Microbiol. 53: 1-12. DOI: 10.1002/jobm.201300563
Van der Meij A, Worsley SF, Hutchings MI, Van Wezel GP. 2017. Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiol. Rev. 41:392–416. DOI: 10.1093/femsre/fux005.
Van der Meij A, Willemse J, Schneijderberg MA, Geurts R, Raaijmakers JM, Van Weze GP. 2018. Inter- and intracellular colonization of Arabidopsis roots by endophytic actinobacteria and the impact of plant hormones on their antimicrobial activity. Antonie Van. Leeuwenhoek. 111: 679–690. DOI: 10.1007/s10482-018-1014-z
Zaiton S, Sariah MA, Abidin . 2008. Effect of endophytic bacteria on growth and suppression of Ganoderma infection in oil palm. Int J Agric Biol. 10: 127-132. DOI: 07–227/AKA/2008/10–2–127–132

Most read articles by the same author(s)