Identifying the potential geographic distribution for Castanopsis argentea and C. tungurrut (Fagaceae) in the Sumatra Conservation Area Network, Indonesia




Abstract. Harapan TS, Nurainas, Syamsuardi, Taufiq A. 2022. Identifying the potential geographic distribution for Castanopsis argentea and Castanopsis tungurrut (Family: Fagaceae) in the Sumatra Conservation Area Network, Indonesia. Biodiversitas 23: 1726-1733. Recently, Castanopsis argentea (Blume) A.DC. and Castanopsis tungurrut (Blume) A.DC. have been listed as endangered species by the International Union for the Conservation of Nature (IUCN). For conservation planning, it is important to know the full distribution of species. This study aimed to predict the potential distribution of C. argentea and C. tungurrut using MaxEnt, and understand key factors responsible for the distribution of these species. A total of 53 occurrences and six environmental variables were used to model their distribution. The AUC values of C. argentea and C. tungurrut were 0.86 and 0.91, respectively, and the models suggest the distribution of both species is mainly influenced by elevation, and temperature seasonality for C. tungurrut. The predicted distributions of the species are in the mountains of the western part of Sumatra, and their range includes 12 conservation areas that have highly suitable habitats for both species. After generating the MaxEnt prediction map, we conducted field validation to validate the model predictions. Field surveys in two predicted areas showed that the predicted distribution maps accurately estimated the distribution of C. argentea and C. tungurrut at those localities.


Adhikari D, Barik SK, Upadhaya K. 2012. Habitat distribution modelling for reintroduction of Ilex khasiana Purk., a critically endangered tree species of Northeastern India. Ecol Eng 40: 37-43. DOI: 10.1016/j.ecoleng.2011.12.004.
Anand V, Oinam B, Singh IH. 2021. Predicting the current and future potential spatial distribution of endangered Rucervus eldii eldii (sangai) using MaxEnt model. Environ Monit Assess 193: 147. DOI: 10.1007/s10661-021-08950-1.
Barstow M, Kartawinata K. 2018a. Castanopsis argentea. The IUCN Red List of Threatened Species 2018: e.T62004506A62004510. DOI: 10.2305/IUCN.UK.2018-1.RLTS.T62004506A62004510.en.
Barstow M, Kartawinata K. 2018b. Castanopsis tungurrut. The IUCN Red List of Threatened Species 2018: e.T62004621A62004623. DOI: 10.2305/IUCN.UK.2018-1.RLTS.T62004621A62004623.en.
Bivand R, Keitt T, Rowlingson B. 2020. rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library. R package version 1.5-16. https://cran. r-project. org/package=rgdal
Chunco AJ, Phimmachak S, Sivongxay N, Stuart BL. 2013. Predicting environmental suitability for a rare and threatened species (Lao newt, Laotriton laoensis) using validated species distribution models. PLoS One 8 (3): e59853. DOI: 10.1371/journal.pone.0059853.
Du Z, He Y, Wang H, Wang C, Duan Y. 2021. Potential geographical distribution and habitat shift of the genus Ammopiptanthus in China under current and future climate change based on the MaxEnt model. J Arid Environ 184: 104238. DOI: 10.1016/j.jaridenv.2020.104328.
Dwiyahreni A, Fuad HAH, Sunaryo S, Soesilo TEB, Margules C, Supriatna J. 2021. Forest cover changes in Indonesia’s terrestrial national parks between 2012 and 2017. Biodiversitas 22 (3): 1235-1242. DOI: 10.13057/biodiv/d220320.
Felix Ribeiro KA, de Medeiros CM, Sanchez Agudo JÁ. 2021. How effective are the protected areas to preserve endangered plant species in a climate change scenario? The case of three Iberian endemics. Plant Biosyst 1-14. DOI: 10.1080/11263504.2021.1918777.
Fischer G, Nachtergaele F, Prieler S, van Velthuizen HT, Verelst L, Wiberg D. 2008. Global Agro-ecological Zones Assessment for Agriculture (GAEZ 2008). IIASA, Laxenburg, Austria & FAO Rome, Italy.
Fourcade Y, Engler JO, Rödder D, Secondi J. 2014. Mapping species distributions with MaxEnt using a geographically biased sample of presence data: A performance assessment of methods for correcting sampling bias. PloS One 9 (5): e97122. DOI: 10.1371/journal.pone.0097122.
Fujii S, Nishimura S, Yoneda T. 2006. Altitudinal distribution of Fagaceae in West Sumatra. Tropics 15: 153-163. DOI: 10.3759/tropics.15.153. .2020a. GBIF Occurrence Download DOI: 10.15468/dl.5axy60. 2020b. GBIF Occurrence Download DOI: 10.15468/dl.0rod3c.
Gillenwater D, Granata T, Zika U. 2006. GIS-based modeling of spawning habitat suitability for walleye in the Sandusky River, Ohio, and implications for dam removal and river restoration. Ecol Eng 28: 311-323. DOI: 10.1016/j.ecoleng.2006.08.003.
Harapan TS, Agung AP, Handika H, Novarino W, Tjong DH, Tomlinson KW. 2020. New records and potential geographic distribution of elongated caecilian, Ichthyophis elongatus Taylor, 1965 (Amphibia, Gymnophiona, Ichthyophiidae), endemic to West Sumatra, Indonesia. Check List 16: 1695-1701. DOI: 10.15560/16.6.1695.
Hijmans RJ. 2020. raster: Geographic Data Analysis and Modeling. R package version 3.4-5.
Ito H, Hayakawa K, Ooba M, Fujii T. 2020. Analysis of habitat area for endangered species using maxEnt by urbanization in Chiba, Japan. Intl J Geomate 18: 94-100. DOI: 10.21660/2020.68.5721.
Jarvis A, Guevara E, Reuter HI, Nelson AD. 2008. Hole-Filled SRTM for the Globe: Version 4. CGIAR-CSI SRTM 90m Database. Retrieved from, accessed on 06.02.2022
Kaky E, Nolan V, Alatawi A, Gilbert F. 2020. A comparison between Ensemble and MaxEnt species distribution modelling approaches for conservation: A case study with Egyptian medicinal plants. Ecol Inform 60: 101150. DOI: 10.1016/j.ecoinf.2020.101150.
Kamyo T, Asanok L. 2020. Modeling habitat suitability of Dipterocarpus alatus (Dipterocarpaceae) using MaxEnt along the Chao Phraya River in Central Thailand. For Sci Technol 16: 1-7. DOI: 10.1080/21580103.2019.1687108.
Koo KS, Park D, Oh HS. 2019. Analyzing habitat characteristics and predicting present and future suitable habitats of Sibynophis chinensis based on a climate change scenario. J Asia-Pacific Biodivers 12: 1-6. DOI: 10.1016/j.japb.2018.11.001.
Laumonier Y. 1997. The Vegetation and Physiography of Sumatra. Kluwer Academic Publisher, Netherlands. DOI: 10.1007/978-94-009-0031-8.
Li Y, Li M, Li C, Liu Z. 2020. Optimized MaxEnt model predictions of climate change impacts on the suitable distribution of Cunninghamia lanceolata in China. Forests 11: 302. DOI: 10.3390/f11030302.
Liu L, Guan L, Zhao H, Huang Y, Mou Q, Liu K, Chen T et al. 2021. Modeling habitat suitability of Houttuynia cordata Thunb (Ceercao) using MaxEnt under climate change in China. Ecol Inform 63:101324. DOI: 10.1016/j.ecoinf.2021.101324.
Mahatara D, Acharya AK, Dhakal BP, Sharma DK, Ulak S, Paudel P. 2021. MaxEnt modelling for habitat suitability of vulnerable tree Dalbergia latifolia in Nepal. Silva Fenn 55: 10441. DOI: 10.14214/sf.10441.
Margono BA, Turubanova S, Zhuravleva I, Potapov P, Tyukavina A, Baccini A, et al. 2012. Mapping and monitoring deforestation and forest degradation in Sumatra (Indonesia) using Landsat time series data sets from 1990 to 2010. Environ Res Lett 7: 034010. DOI: 10.1088/1748-9326/7/3/034010.
McShea WJ. 2014. What are the roles of species distribution models in conservation planning? Environ Conserv 41: 93-96. DOI: 10.1017/S0376892913000581.
Merow C, Smith MJ, Silander JA. 2013. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 36: 1058-1069. DOI: 10.1111/j.1600-0587.2013.07872.x.
Mir AH, Tyub S, Kamili AN. 2020. Ecology, distribution mapping and conservation implications of four critically endangered endemic plants of Kashmir Himalaya. Saudi J Biol Sci 27: 2380-2389. DOI: 10.1016/j.sjbs.2020.05.006.
Nguyen TT, Gliottone I, Pham MP. 2021. Current and future predicting habitat suitability map of Cunninghamia konishii Hayata using MaxEnt model under climate change in Northern Vietnam. Eur J Ecol 7: 1-17. DOI: 10.17161/eurojecol.v7i2.15079.
Padalia H, Srivastava V, Kushwaha SPS. 2014. Modeling potential invasion range of alien invasive species, Hyptis suaveolens (L.) Poit. in India: Comparison of MaxEnt and GARP. Ecol Inform 22: 36-43. DOI: 10.1016/j.ecoinf.2014.04.002.
Phillips SJ, Anderson RP, Schapire RE. 2006. Maximum entropy modeling of species geographic distributions. Ecol Model 190: 231-259. DOI: 10.1016/j.ecolmodel.2005.03.026.
Pielou EC. 1979. Biogeography. Wiley, New York.
Pradhan P, Setyawan AD. 2021. Filtering multi-collinear predictor variables from multi-resolution rasters of WorldClim 2.1 for Ecological Niche Modeling in Indonesian context. Asian J For 5 (2): 111-122. DOI: 10.13057/asianjfor/r050207.
Pradhan P. 2015. Potential distribution of Monotropa uniflora L. as a surrogate for range of Monotropoideae (Ericaceae) in South Asia. Biodiversitas 16 (2): 109-115. DOI: 10.13057/biodiv/d160201.
Pranata S, Sulistijorini, Chikmawati T. 2019. Ecology of Rafflesia arnoldii (Rafflesiaceae) in Pandam Gadang West Sumatra. J Trop Life Sci 9: 243-251. DOI: 10.11594/jtls.09.03.05.
Purohit S, Rawat N. 2021. MaxEnt modeling to predict the current and future distribution of Clerodendrum infortunatum L. under climate change scenarios in Dehradun district, India. Model Earth Syst Environ 1:1-13. DOI: 10.1007/s40808-021-01205-5.
Purwaningsih P, Polosakan R. 2016. Keanekaragaman jenis dan sebaran fagaceae di Indonesia. Ethos: J Penelitian dan Pengabdian kepada Masyarakat 1: 85-92. DOI: 10.29313/ethos.v0i0.1687. [Indonesian]
Redford KH, Amato G, Baillie J, Beldomenico P, Bennett EL, Clum N et al. 2011. What does it mean to successfully conserve a (vertebrate) species? BioSci 61: 39-48. DOI: 10.1525/bio.2011.61.1.9.
Remya K, Ramachandran A, Jayakumar S. 2015. Predicting the current and future suitable habitat distribu.tion of Myristica dactyloides Gaertn. using MaxEnt model in the Eastern Ghats, India. Ecol Eng 82: 184-188. DOI: 10.1016/j.ecoleng.2015.04.053.
Saupe EE, Barve V, Myers CE, Soberón J, Barve N, Hensz CM et al. 2012. Variation in niche and distribution model performance: The need for a priori assessment of key causal factors. Ecol Model 237-238: 11-22. DOI: 10.1016/j.ecolmodel.2012.04.001.
Sloan S, Alamgir M, Campbell MJ, Setyawati T, Laurance WF. 2019. Development corridors and remnant-forest conservation in Sumatra, Indonesia. Trop Conserv Sci 12: 1-9. DOI: 10.1177/1940082919889509.
Soepadmo E, van Steenis CGGJ. 1972. Fagaceae. Flora Malesiana-Series 1. Spermatophyta 7: 265-403.
Su H, Bista M, Li M. 2021. Mapping habitat suitability for Asiatic black bear and red panda in Makalu Barun National Park of Nepal from MaxEnt and GARP models. Sci Rep 11: 14135. DOI: 10.1038/s41598-021-93540-x.
Swets JA. 1988. Measuring the accuracy of diagnostic systems. Science 240: 1285-1293. DOI: 10.1126/science.3287615.
Volis S. 2017. Conservation utility of botanic garden living collections: Setting a strategy and appropriate methodology. Plant Divers 39: 365-372. DOI: 10.1016/j.pld.2017.11.006
Whitmore TC. 1972. Tree Flora of Malaya, A Manual for Foresters. Longmans, London.
Widyatmoko D. 2019. Strategi Dan Inovasi Konservasi Tumbuhan Indonesia Untuk Pemanfaatan Secara Berkelanjutan. Seminar Nasional Pendidikan Biologi Dan Saintek (SNPBS) Ke-IV. [Indonesian]
Yang XQ, Kushwaha SPS, Saran S, Xu J, Roy PS. 2013. Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecol Eng 51: 83-87. DOI: 10.1016/j.ecoleng.2012.12.004.
Yang Z, Bai Y, Alatalo JM, Huang Z, Yang F, Pu X et al. 2021. Spatio-temporal variation in potential habitats for rare and endangered plants and habitat conservation based on the maximum entropy model. Sci Total Environ 784: 147080. DOI: 10.1016/j.scitotenv.2021.147080.
Ye P, Zhang G, Zhao X, Chen H, Si Q, Wu J. 2021. Potential geographical distribution and environmental explanations of rare and endangered plant species through combined modeling: A case study of Northwest Yunnan, China. Ecol Evol 11: 13052-13067. DOI: 10.1002/ece3.7999.
Yi YJ, Cheng X, Yang ZF, Zhang SH. 2016. MaxEnt modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China. Ecol Eng 92: 260-269. DOI: 10.1016/j.ecoleng.2016.04.010.
Yuan HS, Wei YL, Wang XG. 2015. MaxEnt modeling for predicting the potential distribution of Sanghuang, an important group of medicinal fungi in China. Fungal Ecol 17: 140-145. DOI: 10.1016/j.funeco.2015.06.001.

Most read articles by the same author(s)

1 2 > >>