Screening of endophytic fungi as potential antagonistic agents of Pyricularia oryzae and evaluation of their ability in producing hydrolytic enzymes




Abstract. Putri ND, Sulistyowati L, Aini LQ, Muhibuddin A, Trianti I. 2022. Screening of endophytic fungi as potential antagonistic agents of Pyricularia oryzae and evaluation of their ability in producing hydrolytic enzymes. Biodiversitas 23: 1048-1057. One of the most important phytopathogenic fungi is Pyricularia oryzae, as it is the causative agent of rice blast diseases, which is the most destructive and detrimental disease in rice. Biological control using endophytic fungi can be an alternative to control blast diseases. Endophytic fungi are fungi that colonize internal plant tissues without apparently damaging the host. The aim of this study was to isolate endophytic fungi that produce hydrolytic enzymes and to investigate their ability to suppress blast disease. In this study, fifty strains of endophytic fungi were successfully obtained from rice leaves. Three fungi with the highest inhibition against P. oryzae were identified as Trichoderma asperellumCurvularia chiangmaiensis, and Fusarium solani by analyzing fungal ITS sequence. They can produce chitinase ranging from 1.43 to 151 ?g/mL and cellulase ranging from 1.83 to 4.09 ?g/mL, which were hydrolytic enzymes that account for the lysis of phytopathogens. This enzymatic activity can cause damage and degradation of cell walls. SEM results revealed that these endophytic fungi probably excreted wall lytic enzymes or antifungal substances, inflicting wrinkles and disintegrating P. oryzae mycelium.


Agrawal, T., Kotasthane, A. S. 2012. Chitinolytic assay of indigenous trichoderma isolates collected from different geographical locations of Chhattisgarh in Central India. SpringerPlus 1 (1): 73-83. DOI: 10.1186/2193-1801-1-73.
Awad, H. M., El-shahed, Y., Aziz, R., Sarmidi, M., Hesham, El-Enshasy, A. 2012. Antibiotics as microbial secondary metabolites: production and aplication. J Teknologi 59 (1): 101-111. DOI: 10.11113/jt.v59.1593.
Badotti, F., Oliveira, F. S., Garcia, C. F., Vaz, A. B., Fonseca, P. L., Nahum, L. A., Oliveira, G., Neto, A. 2017. Effectiveness of ITS and sub-regions as DNA barcode markers for the identification of basidiomycota (fungi). BioMed Central Microbiology 17 (42): 1-12. DOI: 10.1186/s12866-017-0958-x.
Barnett, H. L., Hunter, B. B. 1998. Illustrated genera of imperfect fungi. Prentice-Hall, Inc., USA.
Beeck, M., Lievens, B., Busschaert, P., Declerck, S., Vangronsveld, J., & Colpaert, J. V. 2014. Comparison and validation of some ITS primer pairs useful for fungal metabarcoding studies. PLoS ONE 9 (6): 1-11. DOI: 10.1371/journal.pone.0097629.
Beuchat, L. R. 1979. Comparison of acidified and antibiotic-supplemented potato dextrose agar from three manufacturers for its capacity to recover fungi from foods. Journal of Food Protection 42 (5): 427-428. DOI: 10.4315/0362-028X-42.5.427.
Choi, J., Park, S. Y., Kim, B. R., Roh, J. H., Oh, I. S., Han, S. S. and Lee, Y. H. 2013. Comparative analysis of pathogenicity and phylogenetic relationship in Magnaporthe grisea Species Complex. PLoS ONE 8 (2): 1-8. DOI: 10.1371/journal.pone.0057196.
Chuwa, C. J., Mabagala, R. B., Reuben, M. S. O. 2013. Assessment of grain yield losses caused by rice blast disease in major rice growing areas in Tanzania. Intertanional Journal of Science and Research 4 (10): 2211-2218.
Dean, R., Van Kan, J. A., Pretorius, Z. A., Kosack, K. E., Di Pietro, A., Spanu, P. D., Rudd, J. J., Dickman, M., Kahmann, R., Ellis, J., Foster, G. 2012. The top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology 13 (4): 414–430. DOI: 10.1111/j.1364-3703.2011.00783.x.
Dhingra O. D., Sinclair J. B. 1995. Basic plant pathology methods. CRC Press, Boca Raton, FL.
Ferrari, A. R., Gaber, Y., Fraaije, W. M. 2014. A fast, sensitive and easy colorimetric assay for chitinase and cellulase activity detection. Biotechnology for Biofuels 7 (37): 1-8. DOI: 10.1186/1754-6834-7-37.
Ghatak, A., Willocquet, L., Savary, S., Kumar, J. 2013. Variability in aggressiveness of rice blast (Magnaporthe oryzae) isolates originating from rice leaves and necks. A Case of Pathogen Specialization. PLoS ONE 8 (6): 1-7. DOI: 10.1371/journal.pone.0066180.
Ghorbanpour, M., Omidvari, M., Abbaszadeh-Dahaji, P., Omidvar, R., Kariman, K. 2018. Mechanisms underlying the protective effects of beneficial fungi against plant diseases. Biological Control 117: 147–157. DOI: 10.1016/j.biocontrol.2017.11.006.
Giraldo, M. C. and Valent, B. 2013. Filamentous plant pathogen effectors in action. Nature Review Micobiology 11 (11): 800-814. DOI: 10.1038/nrmicro3119.
Hami, A., Rasool, R. S., Khan, N., Mansoor, S., Mir, M. A., Ahmed, N., Masoodi, K. Z. 2021. Morpho?molecular identification and first report of Fusarium equiseti in causing chilli wilt from Kashmir (Northern Himalayas). Scientific Report 11. DOI: 10.1038/s41598-021-88867-4.
Hartl, L., Zach, S., Seiboth, V. S. 2012. Fungal chitinases: diversity, mechanistic properties and biotechnological potential. Applied Microbiology and Biotechnology 93: 533-543. DOI: 10.1007/s00253-011-3723-3.
Heimpel, G. E., and Mills, N. 2017. Biological control-ecology and aplications. Cambrige University Press. Cambrige. DOI: 10.1093/ae/tmy017.
Iqbal, R. K., Anwar, F. N. 2019. Chitinases potential as bio-control. Biomedical Journal of Scientific and Technical Research 14 (5): 10994-11001. DOI: 10.26717/BJSTR.2019.14.002629
Jadhav, H. P., Shaikh, S. S., Sayyed, R. Z. 2017. Role of hydrolytic enzymes of rhizoflora in biocontrol of fungal phytopathogens: an overview. In book: Rhizotrophs: Plant Growth Promotion to Bioremediation. Springer Nature Singapore. 183-203. DOI: 10.1007/978-981-10-4862-3_9.
Kariaga, M. G., Wakhungu, J., Were, H. K. 2016. Identification of rice blast (Pyricularia oryzae Cav.) races from Kenyan rice growing regions using culture and classical characterization. Research in Agriculture and Animal Science 4 (4): 16-24.
Karlsson, M., Atanasova, L., Jensen, D. F., Zeilinger, S. 2017. Necrotrophic mycoparasites and their genomes. Microbiology Spectrum 5: 1-21. DOI: 10.1128/microbiolspec.FUNK-0016-2016.
Khalil, A. M., Hassan, S. E., Alsharif, S. M., Eid, A. M., Ewais, E. E., Azab, E., Gobouri, A. A., Elkelish, A., Fouda, A. 2021. Isolation and characterization of fungal endophytes isolated from medicinal plant ephedra pachyclada as plant growth-promoting. Biomolecules 11 (140): 1-12. DOI: 10.3390/biom11020140.
Klaubauf, S., Tharreau, D., Fournier, E., Groenewald, J. Z., Crous, P. W., R.P. de Vries, Lebrun, M. 2014. Resolving the polyphyletic nature of Pyricularia (Pyriculariaceae). Studies In Mycology 79: 85–120. DOI: 10.1016/j.simyco.2014.09.004.
Kohl, J., Kolnaar, R., Ravensberg, W. J. 2019. Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Frontier in Plant Science 10: 1-19. DOI: 10.3389/fpls.2019.00845
Kulkarni, K., Peshwe, S. 2019. Comparative study of growth and sporulation of Magnaporthe oryzae using different media formulations. International Journal of Scientific & Technology Research 8 (11): 1740-1744.
Kumar, G., Chandra, P., Choudhary, M. 2017. Endophytic fungi: a potential source of bioactive compounds. Chemical Science Review Letters 6 (24): 2373-2381.
Kumar, M., Brar, A., Yadav, M., Chawade, A., Vivekanand, V., Pareek, N. 2018. Chitinases potential candidates for enhanced plant resistance towards fungal pathogens. Agriculture 8 (7): 1-12. DOI: 10.3390/agriculture8070088.
Kurrata, G., Kuswinanti, T., Izha, M. N., Gassa, A., Melina. 2019. Morphological characteristics, race distribution, and virulence gene analysis of Pyricularia oryzae isolates (Teleomorph: Magnaporthe oryzae). IOP Conference Series: Earth and Environmental Science 343: 1-8. DOI: 10.1088/1755-1315/343/1/012104.
Laien, M. A., Mohammadi, A. 2021. Chitinase production by Fusarium species in Iran. Horticulture And Postharvest Research 4 (2): 37-50. DOI: 10.22077/jhpr.2020.3444.1149.
Langner, T., Bialas, A., Kamoun, S. 2018. The blast fungus decoded: genomes in flux. mBio 9 (2): 1-4. DOI: 10.1128/mBio.00571-18.
Liu, Q., Yang, J., Zhang, S., Zhao, J., Feng, A., Yang, T., Wang, X., Mao, X., Dong, J., Zhu, X., Leung, H., Leach, J. E., Liu, B. 2016. OsGF14b positively regulates penicle blast resistance but negatively regulates leaf blast resistance in rice. Molecular Plant Microbe Interactions 29: 46-56. DOI: 10.1094/MPMI-03-15-0047-R.
Li-wang, F., Wen-bo, L., Xiao-zhou. X., Feng-cheng, Y., Li-wei, Z., Jin-tao, L., Yuanjun, B., Zhen-yu, L., Wen-sheng, Z., Jun, Y., You-liang, P. 2019. A rapid approach for isolating a single fungal spore from rice blast diseased leaves. Journal of Integrative Agriculture 18 (6): 1415–1418. DOI: 10.1016/S2095-3119(19)62581-5.
Longya, A., Talumphai, S., Jantasuriyarat. 2020. Morphological characterization and genetic diversity of rice blast using ISSR and SRAP markers. Journal of Fungi 6 (38): 1-13. DOI: 10.3390/jof6010038.
Mishra, A., Shahid, M., Dixit, S., Pandey, S., Srivastava, M., Ratan, V. 2016. Morpho-molecular identification of Trichoderma asperellum CA-03/9840. Pure and Applied Microbiology 10 (2): 1-8.
Mythili, J., Chethana, B., Rajeev, P., Ganeshan, G. 2018. Chitinase gene construct from Trichoderma harzianum proved effective against onion purple blotch caused by Alternaria porri. Indian Journal of Biotechnology 17 (1): 50-56.
Nygren, K., Dubey, M., Zapparata, A., Iqbal, M., Tzelepis, G. D., Durling, M. B., Jensen, D. F., Karlsson, M. 2018. The mycoparasitic fungus clonostachys rosea responds with both common and specific gene expression during interspecific interactions with fungal prey. Evolutionary Applications 11: 931–949. DOI: 10.1111/eva.12609.
O’Brien, P. A. 2017. Biological control of plant diseases. Australasian Plant Pathology 46: 293–304. DOI: 10.1007/s13313-017-0481-4.
Onofre, S. B., Santos, Z. M., Kagimura, F. Y., Mattiello, S. P. 2015. Cellulases produced by the endophytic fungus Pycnoporus sanguineus (L.) Murrill. African Journal of Agricultural Research 10 (13): 1557-1564. DOI: 10.13140/RG.2.1.1406.3201.
Prakasapandian, R., T., Raj, M., Kumar, A., Sharma, P. 2016. Morphological and molecular characterization of Trichoderma asperellum strain Ta13. Indian Phytopatology 69 (3): 298-303.
Potprommanee, L., Wang, X. Q., Han, Y. J., Nyobe, D., Peng, Y. P., Huang, Q., Liu, J. Y., Liao, Y. L., Chang, K. L. 2017. Characterization of a thermophilic cellulase from Geobacillus sp. HTA426, an efficient cellulase producer on alkali pretreated of lignocellulosic biomass. PLoS ONE 12 (4): 1-16. DOI: 10.1371/journal.pone.0175004.
Raveloson, H., Ramonta, I. R., Tharreau, D., Sester, M. Long-term survival of blast pathogen in infected rice residues as major source of primary inoculum in high altitude upland ecology. Plant Pathology 67: 610–618. DOI: 10.1111 /ppa.12790.
Robl, D., Delabona, P., Mergel, C. M., Rojas, J. D., Costa, P., Pimentel, I. C., Vicente, V. A., Pradellaa, J. G., Pradilla, G. 2013. The capability of endophytic fungi for production of hemicellulases and related enzymes. BioMed Central Biotechnology 13 (94): 1-12. DOI: 10.1186/1472-6750-13-94.
Ruiz, D., Lichius, A., Turra, D., Pietro, A., Zeilinger, S. 2020. Chemotropism Assays for plant symbiosis and mycoparasitism related compound screening in Trichoderma atroviride. Frontier in Microbiology 11: 1-17. DOI: 10.3389/fmicb.2020.601251.
Sarkanj, B., Bosnjak, Z., Peric, M., Kovac, T., Dzizan, S. 2018. DNA Isolation from Aspergillus flavus: optimal method selection. Food Science Technology 10 (2): 157-163. DOI: 10.17508/CJFST.2018.10.2.02.
Sha, Y., Zeng, Q., Sui, S. 2020. Screening and application of Bacillus strains isolated from non rhizospheric rice soil for the biocontrol of rice blast. Plant Pathology 36(3): 231-243. DOI: 10.5423/PPJ.OA.02.2020.0028.
Sornkom, W., Asano, K., Sone, T. 2015. Use of native promoter-eGFP as a gene reporter on onion epidermis to analyze gene expression of AVR-Pia, an avirulence effector of rice blast pathogen. Engineering Journal 19 (3): 85-93. DOI: 10.4186/ej.2015.19.3.85.
Strakowska, J., Blaszczyk, L., Chelkowski, J. 2014. The significance of cellulolytic enzymes produced by Trichoderma in opportunistic lifestyle of this fungus. Basic Microbiology 54: 1-12. DOI: 10.1002/jobm.201300821.
Sunitha, V. H., Devi, D. N., Srinivas, C. 2013. Extracellular enzymatic activity of endophytic fungal strains isolated from medicinal plants. World Journal of Agricultural Sciences 9 (1): 1-9. DOI: 10.5829/idosi.wjas.2013.9.1.72148.
Tadych, M., White, J. F. 2019. Endophytic microbes. Encyclopedia of Microbiology (Fourth Edition): 123-136. DOI: 10.1016/B978-0-12-809633-8.13036-5.
Tan, W. J., Thanh, T. A., Rafael, E. S., Chen, Y. S., Yeo, F. K. 2021. Morphological and molecular characterization of Fusarium spp. associated with Fusarium wilt disease of Piper nigrum L. in Northwestern region of Sarawak. Malaysian Society for Microbiology 17 (2): 165-177. DOI: 10.21161/mjm.200938.
Thambugala, K. M., Daranagama, D. A., Phillips, A. J., Kannangara, S. D., Promputtha, I. 2020. Fungi vs. fungi in biocontrol: an overview of fungal antagonists applied against fungal plant pathogens. Frontiers in Cellular and Infection Microbiology 10: 1-19. DOI: 10.3389/fcimb.2020.604923.
Veliz, E. A., Hidalgo, P., Hirsch, A. 2017. Chitinase-producing bacteria and their role in biocontrol. AIMS Microbiology 3 (3): 689-705. DOI: 10.3934/microbiol.2017.3.689.
White, T. J., Bruns, T., Lee, S., Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A Guide to Methods and Applications.
Wu, Q., Sun, R., Ni, M., Yu, J., Li, Y., Yu, C., Dou, K., R,en, J., Chen, J. 2017. Identification of a novel fungus, Trichoderma asperellum GDFS1009, and comprehensive evaluation of its biocontrol efficacy. PLoS ONE 12 (6). DOI: 10.1371/journal.pone.0179957.
Zhang, H., Wu, Z., Wang, C., Li, Y., Xu, J. 2014. Germination and infectivity of microconidia in the rice blast fungus Magnaporthe oryzae. Nature Communication 5: 1-9. DOI: 10.1038/ncomms5518.

Most read articles by the same author(s)