Biomass and carbon accumulation in Northern Bangladesh Eucalyptus plantations: Effects of stand structure and age

##plugins.themes.bootstrap3.article.main##

TANMOY DEY
MD. AKRAMUL ISLAM
S. M. RAKIBUL JUBAIR

Abstract

Abstract. Dey T, Islam MDA, Jubair SMR. 2022. Biomass and carbon accumulation in Northern Bangladesh Eucalyptus plantations: Effects of stand structure and age. Asian J For 6: 126-132. Eucalyptus plantations are a significant carbon sink as a fast-growing species in Bangladesh, but little is known regarding biomass, carbon output, and dynamics with stand age. We, therefore, assessed the stand structure, biomass accumulation, carbon storage, and their changing patterns with age in Eucalyptus camaldulensis Dehnh. plantations in the northern part of Bangladesh in early 2021. Biomass and carbon stocks were estimated using the allometric models specific for E. camaldulensis from the biophysical tree parameters (i.e., height and DBH). We used the data from 45 sample plots (100 sq. m each) covering different age classes such as 2, 5, 7, 8, 11, 13, and 21 years. The aboveground, belowground, total biomass, and carbon significantly varied between stand ages (p<0.05). The highest aboveground, belowground, and total carbon stocks were observed at 21 years, and the lowest was found at two years. We observed a positive and strong relationship between total carbon and stand variables such as stand height, diameter at breast height, basal area, crown width, crown length, and bole height but a negative relationship with density. The mean annual increment of both biomass and carbon increased sharply up to seven years and then decreased. Despite having some ecological constraints, E. camaldulensis accumulate a large amount of carbon from the atmosphere, perhaps aiding climate change mitigation.

2017-01-01

##plugins.themes.bootstrap3.article.details##

References
Ahmed FU, Akhter S. 1995. Problems and prospects of Eucalyptus. In: Amin SMR, Ali MO, Fattah MIM (eds). Eucalyptus in Bangladesh, Proceedings of the National Seminar held at Bangladesh Agricultural Research Council, Dhaka on April 16, 1994.
Baishya R, Barik SK, Upadhaya K. 2009. Distribution pattern of aboveground biomass in natural and plantation forests of humid tropics in Northeast India. Trop Ecol 50: 295-304.
Bangladesh Bureau of Statistics (BBS). 2013. District Statistics 2011: Kurigram. P-3. www.bbs.gov.bd.
Bauhus J, Van Winden AP, Nicotra AB. 2004. Aboveground interactions and productivity in mixed-species plantations of Acacia mearnsii and Eucalyptus globulus. Can J For Res 34: 686-694. DOI: 10.1139/x03-243.
Bhattacharya A. 2019. Global Climate Change and Its Impact on Agriculture. Changing Climate and Resource Use Efficiency in Plants. Chapter 1, Academic Press, Cambridge. DOI: 10.1016/ B978-0-12-816209-5.00001-5.
Biswas M, Hasan M. 2020. Measurement of aboveground carbon stocks of roadside agroforestry plantation at Sadar Upazila of Mymensingh District in Bangladesh. J Bangladesh Agril Univ 18 (2): 214-221. DOI: 10.5455/jbau.91198.
Brown S, Gaston G. 1995. Use of forest inventories and geographic information systems to estimate biomass density of tropical forests: Applications to Tropical Africa. Environ Monit Assess 38: 157-168. DOI: 10.1007/BF00546760.
Cairns MA, Brown S, Helmer EH, Baumgardner GA. 1997. Root biomass allocation in the world's upland forests. Oecologia 111: 1-11. DOI: 10.1007/s004420050201.
Canadell JG, le Quéré C, Raupach MR, Field CB, Buitenhuis ET, Ciais P, Conway RJ, Gillett NP, Houghton RA, Marland G. 2007. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci 104: 18866-18870. DOI: 10.1073/pnas.0702737104.
Chauhan SK, Gupta N, Ritu S, Chauhan R. 2009. Biomass and carbon allocation in different parts of agroforestry tree species. Indian For 135 (7): 981-993.
Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Folster H, Fromard F, Higuchi N, Kira T, Lescure JP, Nelson BW, Ogawa H, Puig H, Riera B, Yamakura T. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145 (1): 78-99. DOI: 10.1007/s00442-005-0100-x.
Coleman A. 2018. Forest-based carbon sequestration, and the role of forward, futures, and carbon-lending markets: A comparative institutions approach. J Forest Econ 33: 95-104. DOI: 10.1016/ j.jfe.2018.12.002.
Dessie G, Erkossa T. 2011. Eucalyptus in East Africa. In: Socioeconomic and environmental issues. May. p. 42, Working paper FP46/E. FAO, Rome, Italy.
Dogra AS. 2011. Contribution of trees outside forests toward wood production and environmental amelioration. Indian J Ecol 38: 388-400.
Du H, Zeng F, Peng W, Wang K, Zhang H, Liu L, Song T. 2015. Carbon storage in a Eucalyptus plantation chronosequence in Southern China. Forests 6 (6): 1763-1778. DOI: 10.3390/f6061763.
Evans J, Turnbull JW. 2004. Plantation Forestry in the Tropics: The role, Silviculture and Use of Planted Forests for Industrial, Social, Environmental, and Agroforestry Purposes. 3rd Edn. Oxford University Press, Oxford.
Evans J. 1992. Plantation Forestry in Tropics. 2nd ed. Clarendon Press, Oxford.
Goswami S, Verma KS, Kaushal R. 2014. Biomass and C sequestration in different agroforestry systems of a Western Himalayan watershed. Biol Agric Hortic 30 (2): 88-96. DOI: 10.1080/01448765.2013.855990.
Guo LB, Gifford M. 2002. Soil carbon stocks and land use: A meta analysis. Glob Change Biol 8: 345-360. DOI: 10.1046/j.1354-1013.2002.00486.x.
Harwood CE, Nambiar EKS. 2014. Sustainable Plantation Forestry in South-East Asia. ACIAR Technical Reports No. 84. Australian Centre for International Agricultural Research, Canberra.
Hassan MM. 1994. Prospect of Eucalyptus in Bangladesh. Bangladesh J For Sci 23 (1): 12-19.
Henry M, Tittonell P, Manlay RJ, Bemoux M, Albrecht A, Vanlauwe B. 2009. Biodiversity, carbon stocks and sequestration potential in aboveground biomass in smallholder farming systems of western Kenya. Agric Ecosyst Environ 129 (1-3): 238-252. DOI: 10.1016/j.agee.2008.09.006.
Hossain M, Siddique MRH, Abdullah SMR, Saha C, Islam SMZ, Iqbal MZ, Akhter M. 2020. Development and evaluation of species-specific biomass models for most common timber and fuelwood species of Bangladesh. Open J For 10 (01): 172-185. DOI: 10.4236/ojf.2020.101012.
Hui F, Deng Q, Tian HQ, Luo YQ. 2017. Climate change and carbon sequestration in forest ecosystems. In Handbook of Climate Change Mitigation and Adaptation. Springer International Publishing, New York, USA. DOI: 10.1007/978-3-319-14409-2_13.
IPCC (Climate Change). 2001. The Scientific Basis. Cambridge University Press, Cambridge, UK.
IPCC. 2006. Guidelines for National Greenhouse Gas Inventories, Agriculture, Forestry and Other Land Use (AFLOLU). Institute for Global Environmental strategies, Hayama, Japan.
Jaman MS, Hossain MF, Islam MH, Helal MGJ, Jamil M, Rahman MM. 2016. Quantification of carbon stock and tree diversity of homegardens in Rangpur District, Bangladesh. Intl J Agric For 6 (5): 169-180. DOI: 10.5923/j.ijaf.20160605.01.
Jobbágy EJ, Jackson RB. 2000. The vertical distribution of soil organic carbon and its relation to climate change and vegetation. Ecol Appl 10 (2): 423-436. DOI: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2.
Joshi NR, Tewari A, Singh V. 2013. Biomass and carbon accumulation potential towards climate change mitigation by young plantations of Dalbergia sissoo Roxb. and Eucalyptus hybrid in Terai Central Himalaya, India. Am J Res Commun 1 (4): 261-274.
Kaul M, Mohren GMJ, Dadhwal VK. 2010. Carbon storage and sequestration potential of selected tree species in India. Mitig Adapt Strateg Glob Chang 15: 489-510. DOI: 10.1007/s11027-010-9230-5.
Khan N, Fahad S, Faisal S, Akbar A, Naushad M. 2020. Socio-economic and medicinal review of Eucalyptus tree in the world. SSRN Elect J 1-41. DOI: 10.2139/ssrn.3644215.
Kumar P, Mishra AK, Chaudhari SK, Sharma DK, Rai AK, Singh K, Rai P, Singh R. 2021. Carbon sequestration and soil carbon build-up under Eucalyptus plantation in semi-arid regions of North-West India. J Sustain For 40 (4): 319-331. DOI: 10.1080/10549811.2020.1749856.
Kumar P, Mishra AK, Chaudhari SK, Singh R, Singh K, Rai P, Pandey CB, Sharma DK. 2016. Biomass estimation and carbon sequestration in Populus deltoides plantations in India. J Soil Salin Water Qual 8 (1): 25-29.
Kurz WA, Dymond CC, White TM, Stinson G, Shaw CH, Rampley GJ, Smyth C, Simpson BN, Neilson ET, Trofymow JA, Metsaranta J, Apps MJ. 2009. CBM-CFS3: A model of carbon-dynamics in forestry and land-use change implementing IPCC standards. Ecol Model 220: 480-504. DOI: 10.1016/j.ecolmodel.2008.10.018.
Kuyah S, Dietz J, Muthuri C, Jamnadass R, Mwangi P, Coe R, Neufeldt H. 2012. Allometric equations for estimating biomass in an agricultural landscape: I. aboveground biomass. Agric Ecosyst Environ 140 (1): 430-440. DOI: 10.1016/j.agee.2012.05.011.
Lal M, Singh R. 2000. Carbon sequestration potential of Indian forests. Environ Monit Assess 60: 315-327. DOI: 10.1023/A:1006139418804.
Lieth H. 1975. Modeling the primary productivity of the world. In: Lieth H, Whittaker RH (Eds). Primary Productivity of the Biosphere. Springer-Verlag, New York. DOI: 10.1007/978-3-642-80913-2.
Mahmud KH, Abid SB, Ahmed R. 2018. Development of a climate classification map for Bangladesh based on Koppen’s climatic classification. Soc Sci 39: 23-36.
Malhi Y, Roberts JT, Betts RA, Killeen TJ, Li W, Nobre CA. 2008. Climate change, deforestation, and the fate of the Amazon. Science 319 (5860): 169-172. DOI: 10.1126/science.1146961.
MoEFCC. 2018. The Submission of Bangladesh’s Forest Reference Level for REDD+ under the UNFCCC, Ministry of Environment, Forest and Climate Change (MoEFCC), Government of Bangladesh, Dhaka, Bangladesh. Available online: https://redd.unfccc.int/files/2019.
Omoro LMA, Starr M, Pellikka PKE. 2013. Tree biomass and soil carbon stocks in indigenous forests in comparison to plantations of exotic species in the Taita Hills of Kenya. Silva Fennica 47 (2): 1-18. DOI: 10.14214/sf.935.
Payn T, Carnus JM, Freer-Smith P, Kimberley M, Kollert W, Liu S, Orazio C, Rodriguez L, Silva LN, Wingfield MJ. 2015. Changes in planted forests and future global implications. For Ecol Manag 352: 57-67. DOI: 10.1016/j.foreco.2015.06.021.
Ram J, Dagar JC, Lal K, Singh G, Toky V, Tanwar VS, Dar SR, Chauhan MK. 2011. Biodrainage to combat waterlogging, increase farm productivity and sequester carbon in canal command areas of northwest India. Curr Sci 100 (11): 1673-1680.
Robinson D. 2007. Implications of a large global root biomass for carbon sink estimates and for soil carbon dynamics Proc Royal Soc B: Biol Sci 274: 2753-2759. DOI: 10.1098/rspb.2007.1012.
Sands PJ, Rawlins W, Battaglia M. 1999. Use of a single plantation productivity model to study the proftability of irrigated Eucalyptus globulus. Ecol Model 117: 125-141. DOI: 10.1016/S0304-3800(99)00021-6.
Santantonio D, Herman RK, Overtos WS. 1977. Root biomass studies in forest ecosystems. Pedobiologia 17: 1-31.
Schoonover JE, Crim JF. 2015. An Introduction to soil concepts and the role of soils in watershed management. J Contemp Water Res Educ 154 (1): 21-47. DOI: 10.1111/j.1936-704x.2015.03186.x.
Shin MY, Miah MD, Lee KH. 2007. Potential contribution of the forestry sector in Bangladesh to carbon sequestration. J Environ Manag 82 (2): 260-276. DOI: 10.1016/j.jenvman.2005.12.025.
Singh V, Toky OP. 1995. Biomass and net primary productivity in Leucaena, Acacia and Eucalyptus, short rotation, high density (‘energy’) plantations in arid India. J Arid Environ 31: 301-309. DOI: 10.1016/S0140-1963(05)80034-5.
Tamang M, Chettri R, Vineeta, Shukla G, Bhat JA, Kumar A, Kumar M, Suryawanshi A, Cabral-Pinto M, Chakravarty S. 2021. Stand structure, biomass and carbon storage in Gmelina arborea plantation at agricultural landscape in foothills of Eastern Himalayas. Land 10 (4): 1-15. DOI: 10.3390/land10040387.
Ulman Y, Avudainayagam S. 2014. Carbon storage potential of Eucalyptus tereticornis plantations. Indian For 140 (1): 53-58.
Wirabuana PYAP, Alam S, Matatula J, Harahap MM, Nugroho Y, Idris F, Meinata A, Sekar DA. 2021. The growth, aboveground biomass, crown development, and leaf characteristics of three Eucalyptus species at initial stage of planting in Jepara, Indonesia. Biodiversitas 22: 2859-2869. DOI: 10.13057/biodiv/d220550.
Yoro KO, Daramola MO. 2020. CO2 emission sources, greenhouse gases, and the global warming effect. In Advances in Carbon Capture (Issue August). Elsevier Inc. DOI: 10.1016/b978-0-12-819657-1.00001-3.
Zewdie M, Olsson M, Verwijst T. 2009. Aboveground biomass production and allometric relations of Eucalyptus globulus Labill. coppice plantations along a chronosequence in the central highlands of Ethiopia. Biomass Bioenerg 33: 421-428. DOI: 10.1016/j.biombioe.2008.08.007.
Zhang H, Duan HB, Song MW, Guan DS. 2018. The dynamics of carbon accumulation in Eucalyptus and Acacia plantations in the Pearl River delta region. Ann For Sci 75: 40. DOI: 10.1007/s13595-018-0717-7.
Zhang H, Guan D, Song M. 2012. Biomass and carbon storage of Eucalyptus and Acacia plantations in the Pearl River Delta, South China. For Ecol Manag 277: 90-97. DOI: 10.1016/j.foreco.2012.04.016.
Zhou R, Zhang Y, Peng M, Jin Y, Song Q. 2022. Effects of climate change on the carbon sequestration potential of forest vegetation in Yunnan Province, Southwest China. Forests 13 (2): 1-12. DOI: 10.3390/f13020306.