Fucoxanthin identification and purification of brown algae commonly found in Lombok Island, Indonesia

##plugins.themes.bootstrap3.article.main##

YENI SULISTIYANI
AGUS SABDONO
NORMA AFIATI
HAERUDDIN

Abstract

Abstract. Sulistiyani Y, Sabdono A, Afiati N, Haeruddin. 2021. Fucoxanthin identification and purification of brown algae commonly found in Lombok Island, Indonesia. Biodiversitas 22: 1527-1534. Fucoxanthin is a significant carotenoid pigment found in brown algae. Fucoxanthin is the most human-exploited pigment in brown algae due to its health benefits such as antioxidant, anti-diabetic, anti-obesity, anti-cancer, and anti-inflammatory activities. Therefore, fucoxanthin has been mass-produced on an industrial scale as a food supplement. This work focused on identifying, purifying and comparing the fucoxanthin yield diversity at one study site quantitatively. Three brown algae commonly found in Lombok waters have been studied in this work: Sargassum cf. granuliferum, Sargassum polycystum, and Sirophysalis trinodis. Fucoxanthin was successfully identified using HPLC methods, TLC and Spectra absorption analysis. Using HPLC, fucoxanthin was identified at 450 nm wavelength, with a retention time of 3.088-3.095 min. Based on the TLC result, the Rf value of fucoxanthin is 0.46-0.47, while the spectra absorption maxima are 447.6-448.4 nm. The highest fucoxanthin yield was found in S. polycystum, followed by S. cf. granuliferum and Sirophysalis trinodis with 3.01 ± 0.01 mg/g, 2.21 ± 0.002 mg/g, and 0.95 ± 0.01 mg/g, respectively.

##plugins.themes.bootstrap3.article.details##

References
Abu-Ghannam N, and Rajauria G. 2013. Antimicrobial activity of compounds isolated from algae.” Functional Ingredients from Algae for Foods and Nutraceuticals. In: Dominguez H (Eds). Woodhead Publishing Limited, Cambridge.
Andrew N and Viejo R. 1998. Effects of wave exposure and intraspecific density on the growth and survivorship of Sargassum muticum (Sargassaceae: Phaeophyta). Eur. J. Phycol. 33(3): 251–58. Https://doi.org/10.1080/09670269810001736753.
Berthon JY, Nachat-Keppes R, Bey M, Cadoret JP, Renimel I and Filaire E.2017. Marine algae as attractive source to skin care. Free Radic. Res. 51(6): 555–67. https://doi.org/10.1080/10715762.2017.1355550
Boderskov T, Schemedes PS, Bruhn A, Bo Rasmussen M, Nielsen MM, and Pedersen MF. 2015. The effect of light and nutrient availability on growth, nitrogen, and pigment contents of Saccharina latissima (phaeophyceae) grown in outdoor tanks, under natural variation of sunlight and temperature, during autumn and early winter in Denmark. J. Appl. Phycol. 28: 1153-1165.
El Gamal AA. 2010. Biological importance of marine algae. Saudi Pharm. J. 18(1): 1–25. Http://dx.doi.org/10.1016/j.jsps.2009.12.001.

El Shoubaky GA, Salem EA. 2014. Terpenes and sterols composition of marine brown algae Padina pavonica (dictyotales) and Hormophysa triquetra (Fucales). Int. J. Pharmacogn. Phytochem. Res. 6(4): 894–900.
Erdo?an A, Demirel Z, Dalay M, Eroglu A. 2016. Fucoxanthin content of Cylindrotheca closterium and its oxidative stress mediated enhancement. Turkish J. Fish. Aquat. Sci. 16: 499-506. 10.4194/1303-2712-v16_3_01
Fertah M, Belfkira A, Dahmane EM, Taourirte M, Brouillette F. 2017. Extraction and characterization of sodium alginate from moroccan Laminaria digitata brown seaweed. Arab. J. Chem. 10: S3707–14. Http://dx.doi.org/10.1016/j.arabjc.2014.05.003.
Go H, Hye Jung H, and Taek Jeong N. 2010. A Glycoprotein from Laminaria japonica induces apoptosis in HT-29 colon cancer cells. Toxicol. Vit. 24(6): 1546–53. Http://dx.doi.org/10.1016/j.tiv.2010.06.018.
Harvianto L, Parengkuan M, Koropitan AF, Agustiadi T. 2015. Analisis diagram t-s berdasarkan parameter oseanografis di perairan selat Lombok. Surya Octagon Interdisciplinary. 1(1): 103–19.
Haugan A, Aakermann T, Liaaen-Jensen S. 1992. Isolation of fucoxanthin and peridinin. Carotenoids Part A: Chemistry, Separation, Quantitation, And Antioxidation. In: Packer L (Eds). Meth. Enzymol. Academic Press. New York.
Hitoe S and Shimoda H. 2017. Seaweed fucoxanthin supplementation improves obesity parameters in mildly obese japanese subjects. Funct. Foods Health. Dis. 7(4): 246–62.
Ismail N, Abdullah A, Suri R. 2016. Effects of drying methods, solvent extraction and particle size of malaysian brown seaweed, Sargassum sp on the total phenolic and free radical scavenging activity. Int. Food Res. J. 23: 1558–63.
Jaswir I, Noviendri D, Salleh HM and Miyashita K. 2012. Fucoxanthin extractions of brown seaweeds and analysis of their lipid fraction in methanol. Food Sci. Technol. Res. 18(2): 251–57. https://doi.org/10.3136/fstr.18.251
Kadam SU, Donnell CPO, Rai DK, Hossain MB, Burgess CM, Walsh D, Tiwari BK. 2015. Laminarin from irish brown seaweeds Ascophyllum nodosum and Laminaria hyperborea. Obesity, Fitness and Wellness Week. 13(7): 4270-4280. DOI: 10.3390 / md13074270
Kartikaningsih, Hartati, Eka Deviana Mufti, and Ardian Eko Nurhanief. 2017. Fucoxanthin from brown seaweed Sargassum cristaefolium tea in acid ph. In: Abdul Hamid N, Shresta BG and Mustafa I (Eds). Konservasi Sumber Daya Global: Dari Pengobatan Herbal Tradisional Menjadi Biologi Sintetis Untuk Kehidupan Manusia Yang Lebih Baik. AIP Conference Proceedings. Jawa Timur 2-4 Novmber 2016 (Indonesia).
Kim JA, Ahn BN, Kong CS, Kim SK. 2012. Protective effect of chromene isolated from Sargassum horneri against UV-A-induced damage in skin dermal fibroblasts. Exp. Dermatol. 21(8): 630–31. DOI: 10.1111 / j.1600-0625.2012.01535.x
Limantara L. 2010. Studi komposisi pigmen dan kandungan fukosantin rumput laut cokelat dari perairan madura dengan kromatografi cair kinerja tinggi. IJMS. 15(1): 23–32.
Lourenço-Lopes C, García Oliveira P, Rodríguez M, Corral M, Jiménez-López C, González Pereira A, Prieto Lage M, Simal-Gandara J. 2020. Scientific approaches on extraction, purification and stability for the commercialization of fucoxanthin recovered from brown algae. Foods. 9: 1113. https://doi.org/10.3390/foods9081113
Malta E, Rijstenbil J, Brouwer PEM, Kromkamp J. 2003. Vertical heterogeneity in physiological characteristics of Ulva spp. Mats. Mar. Biol. 143: 1029–38.
Mikami K, Hosokawa M. 2013. Biosynthetic pathway and health benefits of fucoxanthin, an algae-specific xanthophyll in brown seaweeds. Int. J. Mol. Sci. 14(7): 13763–81. DOI: 10.3390 / ijms140713763
Misurcova L. 2011. Chemical composition of seaweeds. In: Kim SK (Eds) Handbook of Marine Macroalgae: Biotechnology and Applied Phycology. 171–192. John Wiley & Sons. New York.
Moghadamtousi ZS, Karimian H, Khanabdali R, Razavi M, Firoozinia M, Zandi, K, Abdul Kadir H. 2014. Anticancer and antitumor potential of fucoidan and fucoxanthin, two main metabolites isolated from brown algae. Sci. World J. 2014. https://doi.org/10.1155/2014/768323
Muranaka T, Saito K. 2010. Production of pharmaceuticals by plant tissue cultures. In: Mander L, Liu HW (Eds) Comprehensive Natural Products II. . Elsevier : Oxford.
Peng J, Yuan JP, Wu CF, Wang JH. 2011. Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: metabolism and bioactivities relevant to human health. Mar Drugs. 9(10): 1806–28. DOI: 10.3390 / md9101806
Peraman M and Nachimuthu S. 2019. Identification and quantification of fucoxanthin in selected carotenoid-producing marine microalgae and evaluation for their chemotherapeutic potential. Pharmacogn Mag. 15(64): S243-249. DOI: 10.4103 / pm.pm_64_19
Pérez ME, Lemaire SD, Crespo JL. 2012. Reactive oxygen species and autophagy in plants and algae. Plant physiol. 160(1): 156–64. DOI: /10.1104/pp.112.199992
Rajauria G and Abu-Ghannam N. 2013. Isolation and partial characterization of bioactive fucoxanthin from Himanthalia elongata brown seaweed: a tlc-based approach. Int. J. Anal. Chem. 2013: 1-6. DOI: 10.1155/2013/802573
Rezayian M, Niknam V, Ebrahimzadeh H. 2019. Oxidative damage and antioxidative system in algae. Tox. Rep 6: 1309–13. DOI: 10.1016/j.toxrep.2019.10.001
Ritter A, Goulitquer S, Salaün J.P, Tonon T, Correa J.A, Potin P. 2008. Copper stress induces biosynthesis of octadecanoid and eicosanoid oxygenated derivatives in the brown algal kelp Laminaria digitata. New Phytol. 180(4): 809–21. DOI: 10.1111/j.1469-8137.2008.02626.x
Sampaio BL, Edrada-Ebel R, Da Costa FB. 2016. Effect of the environment on the secondary metabolic profile of Tithonia diversifolia: a model for environmental metabolomics of plants. Sci Rep. 6: 1–11. Http://dx.doi.org/10.1038/srep29265.
Setyawidati NAR, Puspita M, Kaimuddin AH, Widowati I, Deslandes E, Bourgougnon N, Stiger-Pouvreau V. 2018. Seasonal biomass and alginate stock assessment of three abundant genera of brown macroalgae using multispectral high resolution satellite remote sensing: a case study at ekas bay (Lombok, Indonesia). Mar. Pollut. Bul 131: 40–48. Http://dx.doi.org/10.1016/j.marpolbul.2017.11.068.
Shi D, Li X, Li J, Guo S, Su H, Fan X. 2010. Antithrombotic effects of bromophenol, an alga-derived thrombin inhibitor. Chinese J Oceanol. Limnol. 28(1): 96–98. DOI: 10.1007 / s00343-010-9213-0
Sivagnanam SP, Yin S, Choi JH, Park YB, Woo HC, Chun B. 2015. Biological properties of fucoxanthin in oil recovered from two brown seaweeds using supercritical CO2 extraction. Mar. Drugs 13(6): 3422–42. doi: 10.3390/md13063422.
Stiger-Pouvreau V, Jégou C, Cérantola S, Guérard F, Lann KL. 2014. Phlorotannins in sargassaceae species from brittany (france): interesting molecules for ecophysiological and valorisation purposes. Elsevier. 71:379-411. Http://dx.doi.org/10.1016/B978-0-12-408062-1.00013-5.
Sudhakar MP, Ananthalakshmi JS, Nair BB. 2013. Extraction, purification and study on antioxidant properties of fucoxanthin from brown seaweeds. J. Chem. Pharm. Res. 5(7): 169–75.
Susanto E, Fahmi AS, Abe M, Hosokawa M, Miyashita K. 2016. Lipids, fatty acids, and fucoxanthin content from temperate and tropical brown Seaweeds. Aquat. Procedia 7: 66–75. Http://dx.doi.org/10.1016/j.aqpro.2016.07.009.
Tanniou A, Vandanjon L, Incera M, Serrano Leon E, Husa V, Le Grand J, Nicolas JL, Poupart N, Kervarec N, Engelen A., Walsh R, Guerard F, Bourgougnon N. Pouvreau VS. 2014. Assessment of the spatial variability of phenolic contents and associated bioactivities in the invasive alga Sargassum muticum sampled along its european range from Norway to Portugal. J. Appl. Phycol. 26(2): 1215–30.
Terasaki, Masaru et al. 2009. Evaluation of recoverable functional lipid components of several brown seaweeds (phaeophyta) from japan with special reference to fucoxanthin and fucosterol contents. J. Phycol. 45(4): 974–80. Https://doi.org/10.1111/j.1529-8817.2009.00706.x.
Terasaki M, Narayan B, Kamogawa H, Nomura M, Stephen N, Kawagoe C, Hosokawa M, Miyashita K. 2012. Carotenoid profile of edible japanese seaweeds: an improved HPLC method for separation of major carotenoids. J. Aquat. Food Prod. Technol. 2 (5). https://doi.org/10.1080/10498850.2011.610025
Terasaki M, Kawagoe C, Ito A, Kumon H, Narayan B, Hosokawa M, Miyashita K. 2017. Spatial and seasonal variations in the biofunctional lipid substances (fucoxanthin and fucosterol) of the laboratory-grown edible japanese seaweed (Sargassum horneri turner) cultured in the open sea. Saudi J. Biol. Sci. 24(7): 1475–82. Https://doi.org/10.1016/j.sjbs.2016.01.009.
Thomas NV and Kim SK. 2013. Beneficial effects of marine algal compounds in cosmeceuticals. Mar. Drugs 11(1): 146–64. DOI: 10.3390 / md11010146
Wang X, Li H, Wang F, Xia G, Liu H, Cheng X, Kong M, Liu Y Chen X and Wang Y. 2017. Isolation of fucoxanthin from Sargassum thunbergii and preparation of microcapsules based on palm stearin solid lipid core. Front. Mater. Sci. 11(1): 66–74. DOI: 10.1007 / s11706-017-0372-1
Wen ZS, Xiang XW, Jin HX, Guo XY, Liu J, Huang YN, ouyang XK, Qu YL. 2016. Composition and anti-inflammatory effect of polysaccharides from Sargassum horneri in RAW264.7 macrophages. Int. J. Biol. Macromol. 88: 403–13. http://dx.doi.org/10.1016/j.ijbiomac.2016.02.025.
Will Castro LSEP, Gomes Castro AJ, da S Nascimento Santos M, de Sousa Pinheiro T, de Quevedo Florentin K, Alves LG, Soriano EM, Araújo RM, Leite EL. 2016. Effect of galactofucan sulfate of a brown seaweed on induced hepatotoxicity in rats, sodium pentobarbital-induced sleep, and anti-inflammatory activity. J. Appl. Phycol. 28(3): 2005–17. DOI: 10.1007 / s10811-015-0698-y
Yip WH, Lim SJ, Mustapha WAW, Maskat M.Y, Said M. 2014. Characterisation and stability of pigments extracted from Sargassum binderi obtained from Semporna, Sabah. Sains Malays. 43(9): 1345–54.
Yoshida T, Stiger V, Horiguchi T. 2000. Sargassum boreale sp. Nov. (fucales, phaeophyceae) from Hokkaido, Japan. Phycol. Res. 48(3): 125–31. DOI: 10.1111 / j.1440-1835.2000.tb00207.x
Zailanie K and Purnomo H. 2017. Identification of fucoxanthin from brown algae (Sargassum filipendula) from Padike village, Talango district, sumenep regency, Madura islands, using nuclear magnetic resonance (NMR). Int. Food Res. J. 24(1): 372–78.
Zhang H, Tang Y, Zhang Y, Zhang S, Qu J, Wang X, Kong R, Han C, Liu Z. 2015. Fucoxanthin: A promising medicinal and nutritional ingredient. Evidence-based complement. Altern. Med. 2015. doi: 10.1155 / 2015/723515